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This report summarizes the result of research done under NASA
NAG3-882 Nonlinear Mechanics of Composites with Periodic

" Microstructure. The program was carried out between 3/10/88 and

3/8/91 with Dr. A.D. Freed of NASA Lewis acting as grant monitor.

The effort involved the development of non-finite element
methods to calculate local stresses around fibers in composite
materials. The theory was developed and some promising numerical
results were obtained. It is expected that when this approach is
fully developed, it will provide an important tool for calculating
local stresses and averaged constitutive behavior in composites.
NASA currently has a major contractual effort (NAS3-26491) to bring
the approach developed under this grant to application readiness.

The following report has three sections. One, the general
theory that appeared as a NASA TM, a second section that gives
greater details about the theory connecting Greens functions and
Fourier series approaches, and a final section shows numerical
results.



] | B




mm 1y

T
bbb

T

LILE LT
s i

I i
ilu ek -

bbb U

[

wl
!

mm
ikl

L
L

I

| SRR T [ (B AES N RN

| ATH S |

[N

I

”uq

Nonlinear Mesomechanics of Composites With
Periodic Microstructure: First Report”

Kevin P. Walker
Engineering Science Software, Inc.
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and

Alan D. Freed
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Summary

This work is concerned with modelling the mechanical deformation or constitutive behavior
of composites comprised of a periodic microstructure under small displacement conditions at
elevated temperature. A mesomechanics approach [1] is adopted which relates the microme-
chanical behavior of the heterogeneous composite with its in-service macroscopic behavior.

Two different methods, one based on a Fourier series approach and the other on a Green’s
function approach, are used in modelling the micromechanical behavior of the composite
material. Although the constitutive formulations are based on a micromechanical approach,
it should be stressed that the resulting equations are volume averaged to produce overall
«offective” constitutive relations which relate the bulk, volume averaged, stress increment to
the bulk, volume averaged, strain increment. As such, they are macromodels which can be
used directly in nonlinear finite element programs such as MARC, ANSYS and ABAQUS or
in boundary element programs such as BEST3D.

In developing the volume averaged or “effective” macromodels from the micromechanical
models, both approaches (i.e. Fourier series and Green’s function) will require the evalua-
tion of volume integrals containing the spatially varying strain distributions throughout the
composite material. By assuming that the strain distributions are spatially constant within
each constituent phase—or within a given subvolume within each constituent phase—of the
composite material, the volume integrals can be obtained in closed form. This simplified
micromodel can then be volume averaged to obtain an “effective” macromodel suitable for
use in the MARC, ANSYS and ABAQUS nonlinear finite element programs via user consti-
tutive subroutines such as HYPELA and CMUSER. This “effective” macromodel can be used
in a nonlinear finite element structural analysis to obtain the strain-temperature history at
those points in the structure where thermomechanical cracking and damage are expected to
occur, the so called “damage critical” points of the structure. The “exact” micromechanical
models can then be subjected to the overall “effective” strain-temperature history obtained
at the “damage critical” location and used outside of the finite element program to evaluate
the heterogeneous stress-strain history throughout each constituent phase of the composite
material. This variation must be known in order to evaluate the damage history variation
throughout each constituent phase of the composite material.

*Work funded by NASA Grant NAG3-882.
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1 Introduction

The ultimate objective of this work is to produce a computer program to analyze the hetero-
geneous stress and strain history variation at the “damage critical” locations of a composite
structure operating at elevated temperature. This report describes some of the theoreti-
cal foundations for the program. A mesomechanics [1] approach is adopted which relates
the micromechanical behavior of the heterogeneous composite to its in-service Macroscopic
behavior.

Some composites are actually comprised of a periodic microstructure whilst others are
possessed of an essentially randomly distributed microstructure. Pictures of metal matrix
composites (tungsten-fiber-reinforced superalloys) which exhibit a periodic microstructure
are shown in Fig. 1 which is taken from the article by Petrasek et al [2]. When the fibers in a
composite material occupy a large volume fraction of the material, the induced deformation
in one fiber interacts with and alters the induced deformation in the neighboring fibers. When
the fibers are densely packed the interaction effect becomes dominant and must be accounted
for in the constitutive formulation.

At NASA-Lewis Chamis and his colleagues [3,4,5] employ two different approaches for
analyzing the behavior of structural composites. One method employs a sophisticated finite
element analysis of a periodic microstructure. A unit cell in the periodic microstructure is
modelled with one hundred and ninety two three-dimensional elements and the eight nearest
neighbor cells of the fibrous composite are modelled with superelements. By applying the
strain-temperature history at the “damage critical” location in the composite structure to
the superelement model, the stress-strain history throughout the unit cell can be computed
and used to estimate the maximum damage in the composite structure. This method will
necessarily require large resources in computer time and memory to analyze the viscoplastic
behavior of the composite structure under in-service thermomechanical loading conditions.

Another approach adopted by Chamis and his colleagues [3,4,5]—which avoids large com-
puter resources—is to employ composite micromechanics theory to derive simplified rela-
tionships which describe the thermomechanical constitutive behavior of multilayered fibrous
composites.

When suitable boundary conditions are applied to the superelement model of the periodic
microstructure, it is possible to predict the elastic properties of the equivalent homogenized
material. A comparison [5] with the homogenized elastic properties predicted by the simplified
micromechanical equations generally shows good agreement with the superelement model
except for the Poisson ratios. At high volume fractions (~ 60%) the longitudinal Poisson’s
ratio for unidirectional fibers predicted by the simplified equations is about 15% too small,
whilst the transverse Poisson’s ratio is about 30% too small. These anomalies occur because
the interaction between the fibers is not accounted for in the simplified micromechanical
model. This may be important when considering the highly nonlinear behavior of viscoplastic
composites at elevated temperature.

Dvorak [6] and Dvorak and Bahei-El-Din et al [7,8,9] have also made great progress in
modelling the micromechanical behavior of nonlinear composite materials and are embarked
on a combined experimental and theoretical effort. The variation of the stress-strain history
throughout the unit cell of a periodic microstructure is obtained with a finite element analysis
in which the interaction effects of the surrounding cells is accounted for by applying periodic



boundary conditions to the surface of the unit cell.

Work on the theoretical foundations behind the homogenization of micromechanical con-
stitutive models to produce bulk macroscopic models has been under way in France by Devries
and Léné [10], Léné [11,12], Duvaut [13], Renard and Marmonier [14], Léné and Leguillon
[15] and Sanchez-Palencia [16,17]. These references give a good account of the work be-
ing conducted in France by other researchers. Much of this work is founded on the use of
multivariable asymptotic techniques [18]. In an infinite periodic structure the stress-strain
history in each unit periodic cell is, perforce, identical. Due to the finite size of the compos-
ite structure the effects of surface tractions and displacements on the surface will cause the
stress-strain history to vary from cell to cell. If the unit cell is much smaller than the size
of the structure this variation from cell to cell will be small. If L is a typical dimension of
the unit periodic cell and D is a typical dimension of the composite structure, then the ratio
L/D is a small parameter of the problem. The displacement variation throughout the unit
cell will then depend on six spatial variables, i.e.,

* ok ok
Uy = Uy ('le T2, X3,Ty, $2a$3)

where ! = x;L/D. The spatial variables x} take into account the slow variation of the
dmplacement from cell to cell due to the ﬁnlte size of the ratio L/D when u; is a periodic
function of the variables z;. By expanding the displacement and other spatial variables of the
problem into a series in powers of L/ D and equating like powers in the perturbation expansion,
it is possible to obtain the effect of the finite size of the structure on the deformation behavior
in the unit cell. Due to the perturbative assumption of small L/D this method is not expected
to be valid for thin composite sections or to be applicable at those places in the structure
where surface effects or nonperiodic inclusions are important. :

Rather than employing finite element techniques to determine the stress-strain history
variation throughout the unit periodic cell, Aboudi [19] has recently developed a macro-
scopic formulation for periodic composites based on volume averaging a viscoplastic consti-
tutive model over the unit periodic cell. This work expands the heterogeneous displacement
throughout the constituent phases of the unit cell as linear and higher order functions of the
coordinates. Good agreement with experimental results was achieved by volume averaging
Bodner’s [20] viscoplastic constitutive model over the unit periodic cell, but the method is
general and any constitutive model may be used to represent the deformation behavior of the
constituent phases. The limitation here is that large spatial gradients in the strain history
may not be accurately modelled by linear or quadratic interpolation functions on the unit
periodic cell.

Weng and his colleagues [21,22] have employed self-consistent methods to study the effect
of inclusion size and volume fraction on the stress distribution in and around spheroidal
inclusions embedded in an “effective” non-uniform matrix material, and the effect which this
has on the overall “effective” macroscopic constitutive behavior of the composite. In the
first paper they point out that the derivation of the fictitious body forces which represent
the inelastic behavior of the heterogeneous composite material should be obtained from first
principles rather than using their heuristic approach. In the second paper the Mori-Tanaka
theorem [24] is used to represent the effect of the heterogeneous composite, and a similar
procedure is followed in the present work to develop a self-consistent method for composites
which exhibit a periodic microstructure. In addition, the present report also derives the
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fictitious body forces for a periodic microstructure from first principles. In reference [23]
Zhu and Weng have used a combined micromechanics and continuum theory approach to
develop a creep deformation model for particle-strengthened metal matrix composites. They
stress the fact that the creep resistance of the composite is underestimated when simplified
metallurgical and mechanics approaches are adopted.

A comprehensive application of micromechanics to mechanical deformation problems is
given by Mura [24] in his book “Micromechanics of Defects in Solids”. This work was used by
Nemat-Nasser and his colleagues who have exploited the mathematical simplicity of a periodic
microstructure in order to develop elastic, plastic and creep constitutive models [25,26,27,28]
for composite materials. The assumption of periodicity allows the heterogeneous stress, strain
and displacement fields to be expanded in a Fourier series, which greatly simplifies the ensuing
computations. This technique fully accounts for the interaction effects between neighboring
fibers. Even when the composite is comprised of closely packed fibers distributed at random
the method gives accurate results [25] for the “effective” elasticity tensor. When densely
packed fibers form a large volume fraction of the composite material these interaction effects
play a dominant réle and must be included in the calculations. It appears that inclusion of the
interaction effects can be as, or more, important than inclusion of the random nature of the
microstructure when the fibers occupy a large volume fraction of the composite material. In
this report we have developed the Fourier series approach in order to handle the viscoplastic
behavior of the constituents in the unit periodic cell.

The nonlinear constitutive behavior of composites with a periodic microstructure can also
be treated with a Green’s function approach [29,30,31,32,33]. Here, the periodic heteroge-
neous material property variation—due to the fibers—is treated as a fictitious body force in
the matrix material. The Green’s function is used to evaluate the displacement due to a unit
point force in the matrix material and the actual displacement at any point in the composite
can then be determined by summing (integrating) the effect due to a volume distribution
of fictitious periodic body forces. It is shown in Appendix B that this method is exactly
equivalent to the Fourier series approach by invoking a mathematical technique known as the
Poisson sum formula. The Green’s function approach is more general in that the method can
also handle the nonperiodic case where there may be inclusions in one unit cell but not in
the neighboring cells. It is also able to handle surface effects, although the surface integrals
which represent the surface effects in the Green’s function method could be expanded in a
Fourier series for thin composite sections.

The approach adopted in the present work is to develop homogenization techniques which
can provide simplified macromodels for use in a nonlinear finite element program, similar in
spirit to the simplified models used at NASA-Lewis, but which account for the viscoplastic
interaction effects in the periodic structure and which allow surface effects for thin struc-
tures to be taken into account. Once the strain-temperature history at the “damage critical”
location has been found from the finite element analysis, it can be used to “drive” the mi-
cromechanical relations in order to obtain the stress-strain history variation throughout the
unit cell. These micromechanical relations are the same relations which are used to obtain
the simplified homogenized constitutive model. When the unit cell is chosen to have the form
shown in Fig. 2, it is clear that a periodic arrangement of such a microstructure allows for
the analysis of laminated composite structures.



2 Overview of Theoretical Modelling Approaches

2.1 Outline of Approach

In order to develop a homogeneous macroscopic constitutive model from micromechanical
principles it is necessary to know the stress-strain history throughout the unit cell of a periodic
composite. Some of the approaches which are presently being given currency are described
in the introduction. ,

The Fourier series and Green’s function approaches can be used to compute the viscoplas-
tic stress-strain history throughout the unit cell of a periodic composite and can be simplified
to produce a model suitable for use in a nonlinear finite element program. In this report
the Fourier series and Green’s function approaches are developed and shown to be equivalent
to each other by means of the Poisson sum formula. This equivalence holds only for an in-

finitely extended medium. When the medium has a finite size the effect of spatially varying

displacements and tractions on the surface of the medium must be accounted for. This is
easily accomplished with the Green’s function method by retaining the appropriate surface
integral contributions which are discarded in the case of an infinite medium. In the Fourier
series approach the surface integral could be included, and, in the case of a thin composite
section which has an infinite surface the integral can be expanded into a Fourier series. In
fact, the methods can be combined, so that if inclusions are present in one unit cell and not
in the neighboring cells, their effect can be taken into account in the Fourier series method
by treating them with a Fourier integral or Green’s function approach.

An overview of the present work is depicted in Fig. 3. Simplified versions of the mi-
cromechanical constitutive equations can be volume averaged to produce a macroscopic ho-
mogenized viscoplastic model. This can then be used in a nonlinear finite element program
to analyze the structural behavior of a composite structure under in-service thermomechan-
ical loading conditions. The finite element analysis yields the strain-temperature history at
the “damage critical” location and this history can then be applied to the micromechanical
‘equations to determine the heterogeneous stress-strain history throughout the unit cell.

A detailed flow chart in Fig. 4 shows the anticipated structural analysis procedure. Both
the Fourier series and Green’s function approaches can be used to create a coarse subvolume
model. This coarse model can then be homogenized and included in a user defined constitutive
subroutine in a nonlinear finite element program. The Green’s function approach can also be
used to derive a simple self-consistent model for use in the user subroutine.

2.2 Homogenized Macroscopic Equations

A periodic composite material is supposed acted upon by an imposed strain increment Ae%
and responds in bulk with a stress increment Aa?j. These values are then equated to the
respective volume averaged quantities in order to obtain the “effective” constitutive relation
for the composite material, <.e.,

Aag:% f‘/ Aoy (r)dV(r) and As?j:% /J AT(r) dV (r) (1)

where V is the volume of the body.
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In section 4 it is shown that the volume averaged or “effective” constitutive relation for
the composite material can be written as

AcY = Dy A — % J[[{Dmuben ) = 8Dyu () [Ack (1) = Aew (] } V() (2)
c V.

where V., is the volume of a unit periodic cell in the composite material, Ae}(r) is the total
strain increment at point r in the periodic cell due to the imposed uniform total strain
increment Ae?, at the surface of the composite, and Ac(r) is the strain increment at point
r in the periodic cell representing the deviation from isothermal elastic behavior. The fourth
rank tensor §D;;.(r) is defined by the relation

§Digua(r) = 9(r) (Dl ~ D) (3)

where 9(r) = 1 in the fiber and ¥(r) = 0 in the matrix, with D{jkl denoting the elasticity

tensor of the fiber and D[}, that of the matrix.

In the expression for the average or “offective” constitutive relation in equation 2, the
quantities Aeyy, Dy, and 6Dyju(r) are given. The deviation strain increment Acy(r) can
be obtained throughout the periodic cell as a function of position r by using an explicit
forward difference method since the stress and state variables in a viscoplastic formulation
will be known functions of position at the beginning of the increment. Everything is therefore

known explicitly except the total strain increment Ael (r).

2.3 Fourier Equation Overview

In the Fourier series approach described in section 4 we find that the total strain increment
is determined by solving the integral equation,

1 o
Aej, (r) = Afgz'*vzzz Giuij (€) ¥

np=>0

x /V/ / ) (D A, (x') = 8Diyrs (') [A], () = Acr, ()]} av(r) (4)

where the fourth rank tensor gg;; (€) is given by
1 _ _
guis (€) = 5 (GGMi™ () +GGeMi™ (0)) (5)

in which the Christoffel stiffness tensor M;; (¢), with inverse M;* (€) is defined (cf. [33]) by
the relation,

Mij (C) = Dprgququ (6)
with ¢, = &/vE&n&m = &/€ being a unit vector in the direction of the Fourier wave vector §,
and & = /&n&n denoting the magnitude of the vector £. In equation 4 the sum is taken over

integer values in which
2y _ 27Ny _ 2nns
61 - L1 ) 52 - L2 ’ &3 - L3 (7)




and L,, La, L3 are the dimensions of the unit periodic cell in the 21, Z3, T3 directions, so that
V. = L,L,Ls. The values of n;, ng, n3 are given by

n,=0,%+1,4+2,43,...,etc., forp=1,2,3 (8)
and the prime on the triple summation signs indicates that the term with ny = ny =n3 =20

is excluded from the sum.

2.4 Green’s Equation Overview

In the Green’s function approach the total strain increment Aej;(r) is determined by solving
a different integral equation, viz.,

Acli(r) = Aep + ///Uklmn (r—r') {DmnrsAcrs (r') —
v

— 6Dunrs (v') AT, (v') = Dery ()]} av(r) (9)

where the fourth rank tensor Uy (r — r') gives the kl component of the total strain incre-
ment at point r due to the mn component of a stress increment applied at point r’ in the
infinite matrix with elasticity tensor D7 .., t.e.,

1 (G (r — ') 0*Gim (r — 1) (10)
2 0,0z, Oz 0ty

Uklmn (I‘ - I',) = -

and the volume integration in equation 9 extends over all the periodic cells in the composite

material, i.e., over the entire composite.
The Creen’s function tensor is defined in Appendix A, equation A.26, by the Fourier

integral [24,32,33]
Frd3K M;! | ,
Gij(r—1')= /// g () e K (r-1) (11)

21} K?

in which the tensor ¢ is now defined by the relation ¢; = K;/K with K = K,K, denoting
the magnitude of the vector K = (K, K3, K3).

In Appendix B it is shown, by applying the Poisson sum formula, that equations 4 and 9
are identical, although the summation extends over the integer values n;, ng, n3 in equation 4
and extends over the periodic cells in equation 9.

2.5 Integration of the Equations

Both equations 4 and 9 are implicit integral equations for the determination of the total strain
increment Ae7y(r), since this unknown quantity appears both on the left hand sides of the
equations and on the right hand sides under the volume integrations.

The “cffective” constitutive relation given in equation 2 and the total strain increment
relation, given by either equation 4 or 9, contain the volume integration of the deviation
strain increment Ack(r). In the periodic cell the deviation strain increment at any point r
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will be determined from a unified viscoplastic constitutive relation [34] appropriate to the
constituent phase in which the point r resides. If a constituent phase is included at the fiber-
matrix interface, a constitutive relation can also be proposed for this phase, and the resulting
inelastic strain increment determined for inclusion in the volume integrals. This may be
important for metal matrix composites where there can be chemical reactions between fiber
and matrix at elevated temperatures, and for composites where the fiber has been coated to
enhance overall composite properties.

Equations 2, 4 and 9 form the basic incremental constitutive equations for determining the
“effective” overall deformation behavior of a composite material with a periodic microstruc-
ture. In order to update the stress state in each of the constituent phases in preparation
for integrating the “effective” constitutive relation over the next increment, the constitutive
relation,

Aays(r) = Dygu(r) (Aciy(r) — Acu(r)) (12)

is used, where D;ju(r) = D{jkl or D7, according as the point r is in the fiber or matrix.
This relation is used to update the stress o;;(r) and, in turn, the internal viscoplastic state
variables g;(r) at each point r in preparation for computing Acy(r) in the next increment.

The derivation of the preceding equations and some methods for their solution are dis-
cussed in the succeeding sections of this report. Numerical solutions will be obtained during
the research effort from appropriate FORTRAN computer programs.

3 Periodic Microstructure

3.1 Volume Averaging

The periodic composite is supposed acted upon at its surface by a spatially linear displacement
increment, Aul(r), given by

Add(r) = T, Acl; + :chw?j (13)
where Ae?j and Aw?j are the spatially uniform strain and rotation increments at the surface
of the composite.

If the matrix material was homogeneous and had no fibers embedded in it, the strain
increment would be homogeneous and given by

N (G(Au?) . a(Aug)) 14)

u 2 Bl‘j a:L‘,;

Since this is constant, we may trivially volume average AE?j over the volume V of the homo-
geneous matrix material to obtain

1 1 B(Auo(r)) G(Auq(r))
o _ 21 2 i J
Acy == /‘[ Ik ( T i (15)
which, by Gauss’ divergence theorem, may be written as
1
Ag), = v //% (nj(r)Au?(r) + ni(r)Aug(r)) dS(r) (16)
s

7



where the integral extends over the surface of the material and n;(r) denotes the outwardly
directed unit normal vector at point r on the surface. Thus, by applying the displacement
increment Au?(r) in equation 13 over the surface of the material to produce the surface strain
increment given in equation 16, equations 15 and 16 show that the strain increment in the
matrix material is spatially uniform.

If the displacement increment Aul(r) in equation 13 is applied to the actual composite
material, the total displacement increment within the material, Au? (r), will vary in a periodic

manner due to the assumed geometric periodicity of the composite material, so that
Aul(r) = Aud(r) + Aw(r) (17)

where Au?(r) is the displacement increment which would be induced in the homogeneous
matrix if the fiber phase were absent, and Au;(r) is the perturbation or deviation from the

homogeneous value due to the presence of the fibers.
Corresponding to these displacement increments, the total strain increment at any point

r in the composite, Aef;(r), is given by the relation
AeT (r) = Ay, + Aep(r) (18)

where

o 1(0(Au)) | 8(Au) 1 (9(Aw) | 8(Aw)
Askl——i( 81‘1 t sz and Aekl(r)~2 6:1:1 + Bxk (19)

with A, representing the spatially constant total strain increment which would be produced
on the surface and in the interior of the homogeneous matrix if the fibers were absent, and
Aey(r) representing the deviation from the uniform value due to the presence of the fibers.
Both the total strain increment Ac,(r) and the perturbed strain increment Aegy(r) vary
throughout the composite in a periodic manner.

We define the volume averaged stress and strain increments as Aa?j and AE?j, respectively.
The required “effective” constitutive equation for the composite material is then an expression
relating the volume averaged stress and strain increments. For a function f(r) which varies
with position the volume average is defined by the relation

(5 == [ e v (20

Since the composite is assumed to be comprised of a periodic aggregate of identical unit cells,
we may write

(= [ffroave (21)

where V. denotes the volume of the unit periodic cell.
If we volume average the total strain increment in equation 18, we obtain

(A = o [[[Ache)av ) = Ack+ o [[[ Aeu) av () (22)
c V. c v
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(AEZ}) = AEgl + (AEM) (23)
But the volume averaged total strain increment is defined as Ae};, so that (Aef;) = Aey, and
(Agg) =0 (24)

which shows that the volume averaged perturbation strain increment, Aey(r), is equal to
ZETo.

3.2 Eigenstrain and Deviation Strain Increments

If the elasticity tensor is denoted by D;ju(r) and the inelastic strain tensor by eb(r), then
the constitutive equation at any point r in the composite material can be written as

0,5(r) = Digua(r) (e5(r) — ehi(x) — ani(r) (T — Tv)) (25)

where ay(r) is the coefficient of thermal expansion.
The incremental form of Hooke’s law is

A0yj(r) = Dy (r) (Aely(r) — Ac(r)) (26)

where Acy;(r) denotes the incremental strain representing the deviation from isothermal elas-
tic conditions and is given by

Acy(r) = Aef(r) + afy(r)AT (27)
in which

azl(r)AT = akl(r)AT + (T - TO) Aakl(r) —
— DL (r) ADijmn(r) (€L0() = €0 (¥) — ma(r) (T = T))  (28)

is the nonisothermal increment in strain. The tensors AD;;u(r) and Aay(r) represent the
incremental changes in the elasticity and thermal expansion tensors due to the temperature
increment AT

In a unified viscoplastic constitutive formulation [34] which is integrated by an explicit
forward difference method, the inelastic strain increment Aef (r) is a function of the current
stress (at the beginning of the increment), oy;(r), and the current values of the internal
viscoplastic state variables, ¢;(r). For example, if

55 = fij (0rs, qs) (29)

then Aef; = fij (0rs,4s) At, and the inelastic strain increment is independent of the total
strain increment AeZ(r). This independence of the inelastic strain increment on the total
strain increment is no longer true if an implicit integration method (e.g. backward difference)
or subincrementation method is used.

The elasticity tensor D;;x(r) may be written as

Dijkl(r) = DZ'LICI + 6Dijkl(r) (30)

9



where 7
8Diju(r) = 9(r) (Dl — D) (31)

and ¥(r) = 1 in the fiber and d(r) = 0 in the matrix, the superscripts f and m referring to
the elasticity tensor of the fiber and matrix, respectively. The constitutive equation at any
point r can then be written, from equation 26, as

Acyi(r) = (D + 6Dig(r)) (A + Aei(r) — Acy(r)) (32)
or
Aoij(r) = Djy (AEgz + Afkl(r)) -
~{ D Acu(r) - 6Dyu(r) [A, + Aew(r) — Acu(r)]} (33)

If the quantity in braces is set equal to D7}, Aej(r), that is, if
DZ-‘HAEZ,(r) = Dg-‘k,Ackl(r) — 0Dj(r) [Asgl + Agy(r) — Ackl(r)] (34)
then equation 26 can be written in the form,
Aoy(r) = D (Aefy(r) — Ack(r)) = Dy (Ach + Aey(r) — Aejy(r)) (35)

From the preceding equation it is evident that the eigenstrain increment, Ae},(r), represents
the incremental deviation from isothermal elastic behavior in the composite material when
the elasticity. tensor is taken to be a spatially constant tensor appropriate to that of the
matrix phase.

Newton’s law for continuing static equilibrium throughout the strain increment requires

that ,
0(Aay;(r)) _

5 0 (36)

Equations 35 and 36 then require that

O{ Dy (Al + Acy(r) — Aeyy(r))}
8.’L'j

=0 (37)

or, if AcY, is constant,

m O(Aey(r m O(Qcei(r

g, H0sel) _ e (B (e) a5
j j

4 Fourier Series Approach

4.1 Fourier Expansions

The application of Fourier series to the calculation of the “effective” overall constitutive
behavior of periodic composites has been dealt with in detail by Nemat-Nasser and his col-
leagues [25,26,27,28]. This work is used in this section to develop constitutive relationships
for viscoplastic composite materials under small displacement conditions.
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Due to the geometric periodicity of the composite we may expand Awu(r) and Aej(r) in
a Fourier series (cf., for example, Appendix 3 of Mura’s book, [24]). This gives '

+o0c oo foo _(21rn1 2nne 2nng )
r3

Auk(r) = Z Z ZI Aﬁk (nl,ng,ng) 6z 2 mt L2 i Ls

n1=0 no=0 n3=0

(39)

where L;, Lo, L3 are the dimensions of a unit cell in the 1, 2, 3 directions. The coeflicients

Afi, in the Fourier expansion are determined by multiplying each side of equation 39 by
_i(27rm1m +27rmgz +27rm3m )
Ui ®F T2 **7Is ®) and integrating over the volume of the unit cell to give

Ly L2 Ls .(21rn1 27Ny 27ng
i

1 - T3 T2 T
Aﬁk(nl,nz,ng):L1L2L3/ f /Auk(r)e L 2T L 3) dz,dzydzs  (40)

£1=0 22=02z3=0

where only the terms with m; = n; survive in the summations.
Equations 39 and 40 can be written in shortened form as

Aug(r) =Y f Z’ Aty (€) €47 (41)

np=0

with coefficients Ady (£) determined by the inverse relation

1 )
~ - —i€.r
A (§) = /V/ Aug(r)e € dV (r) (42)
where
€= (6.626), r = (z1,%2,23), Ve = L1L2L3 (43)
with 0
& = an (no sum on %) fori=1,2,3. (44)

The strain increment Ae%,(r) can also be expanded in a Fourier series to give

At ®) =33 3 Ay (€) 6T (45)

n,=0

with coefficients Aé}; determined by the inverse relation
1 .
A& (8) = o [[[ Actutr)e e av (D) (46)
iz

In equations 41 and 45 the prime indicates that the term with n; = ny = ng = 0 is excluded
from the summations, since Ay, (n; = 0,n2 = 0,n3 = 0) represents a rigid body displacement
increment and A&}, (n, = 0,n2 = 0,n3 = 0) represents a spatially uniform strain increment.

11



4.2 Equilibrium Equation

By substituting equation 41 into equation 19; equation 19 into the left hand side of equation
38; and equation 45 into the right hand side of equation 38, the equilibrium relationship
becomes

Djuy. Z Z (ch )& + Aty (§) gk,gj) et =

+o0 )
—iD7y, Z Z Z Aég () ﬁjelf'r

np=0

or
Dgiktft@‘ Ay, (5) = UkthAékz (5) (47)

If £ = /€& denotes the magnitude of the vector €, a unit vector ¢ in the direction of £ can
be written as ¢; = §;/€. Equation 47 can therefore be written in the form,

£2D:;kl (51) (g_J) Ady, (5) 1]kl£JAék‘l (S)

£/ \¢
or ,
52 (Di?lele) Ady (€) = _iDZ'lklngékl (£) (48)
The second rank tensor,
M (C) = My, (C) = Di?lele (49)
is called the Christoffel stiffness tensor (cf. [33]) and equation 48 can be written as
"My (¢) Aty (€) = ~iDJ}, A8, (€) (50)

This equation can be inverted by premultiplying each side by the inverse tensor £2M™! to
give the Fourier expansion coefficients

Adly (&) = —iM; ' (¢) D7, &AL (§) ¢ (51)

The expansion coefficients can now be substituted into the Fourier expansion of Au(r) in
equation 41 to give

Auk Z Z Z 25 2Mzk 1JT3€.7AETS (5) er . (52)

np=0

This result may now be substituted into equation 19, so that the perturbation strain increment
may be written as

B =3 5} ( €M Q66+ €M (66 ) DRLAEL (E) e (59

np=0

If we define the fourth rank tensor gi;; (¢) by the relation
o (€) = 5 (Mi (©) 66+ My (€6 (54)
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then the perturbation strain increment can be written in the form

AEkl I') Z Z Z Gklij C) Dz]r.s é:s (g) eif-l' (55)

np=0

and by inserting the relation for the Fourier expansion coefficients Aé7, from equation 46, we

obtain
Acu(r) = }:zzgkm (©) /// D, A, () €40 av (x) (56)

where the integration extends over the volume, VC = L,L,L3, of the unit periodic cell.
From equation 18 the total strain increment is given by

1 X :
A(r) = Al + o X0 5 guy (©) [[[ Der, () 85 av () (57)
c np=0 v,
which, from the definition of D[}, Aek, (r') in equation 34, may be written in the final form,

1 +o00 / ' ,
AE}Z(") = A521+VZZOZ Gklij <) ///ezg.(r—r) DZLTSACTS( r') -
c np= V.

— 6D;jrs (r') [Aez; (r') — Acys (r')]} av(r') (58)

This implicit integral equation—equation 4 in section 2.1-——must be solved to yield the total
strain increment Ae},(r) at each point r in the unit periodic cell.

Instead of solving for AeZ,(r) from this implicit integral equation, we could use equation 34

to eliminate Aek,( r) from equation 57 to give an equivalent integral equation for Aej,(r), viz,

Dl Aeky(r) = D:-?szth(l‘) — 8D;jki(r) [Aegl - Ack,(r)] —
= 8Dyju(r Z Z 3~ Grtmn (€) / f f D7, Acs, (x') €40 dv (r) (59)

The incremental constitutive relation at any point r is given in equation 35, and this
relation can be used to update the stress state at any point r in the unit cell once equation 59
is solved for Aej,(r). Alternatively, equation 58 can be solved for Aefi(r) and inserted into
equations 34 and 35. The overall “effective” constitutive relation for the composite material
can be obtained by averaging equation 35 over the unit periodic cell. This gives

(o) = (D (Al + Aew — Achy))

or

(Aaij> = t]klAEkl + ngkl (Aew) — D;?kl (Aeky) (60)
If we equate the volume averaged stress increment (Aocy;) and the overall bulk response stress
increment Agy;, i.e., if (Aoy;) = Aoy, and we note from equation 24 that the volume averaged
perturbation strain increment is zero, i.e. (Aey) = 0, then the overall “effective” constitutive
relationship is

AU?j zAfkt zgkl (Aefy) (61)

z]k
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or

1 , ,
AU?j = DZIMAEQJ - VC/V/ {DglklACkl (r) = 6Diji (1) [AEZI (r) — Acy (r)]} dv(r)  (62)

which is the result presented in equation 2 of section 2.2. The procedure for integrating the
overall “effective” constitutive relation then proceeds as follows.

4.3 Fourier Integration Algorithm

1. From a knowledge of the stress state throughout the unit periodic cell at
the current time, ¢, calculate the inelastic strain increment Acf; (0rs,qs, 1) from an
appropriate unified viscoplastic constitutive relation. The viscoplastic constitutive
relation will vary according as r is in the fiber or matrix phase, respectively.

2. Compute the eigenstrain Ae},(r) throughout the unit periodic cell from the
implicit integral equation 59 or from equations 34 and 58.

3. Compute the stress increment throughout the unit periodic cell from equa-
tion 35 and update the stress, strain and viscoplastic state variables according to
the relations

o;; (r,t + At) = 045 (r,t) + Aoyy(r),
6” (r,t+ At) =¢; ( ,t) + Ael(r),
qz(r,t+At) =q,( r, )+Aq1(l')

4. Calculate the overall “effective” stress and strain increment for the compos-
ite from equation 61 and update the overall “effective” stress and strain from the
relations

(t+At) =02 ( )+Aa,J,

5. Repeat the preceding calculations for each incremental load step.

4.4 Implicit Integration Algorithm

The preceding algorithm makes use of the fact that the inelastic strain increment Aef(r) is
independent of the total strain increment Aej(r) if an explicit forward difference method -

such as Euler or Heun forward difference—is used to integrate the unified viscoplastic relations
for the fiber and matrix phases. If an implicit method—such as backward difference or sub-
incrementation—is used, the inelastic strain increment depends on the total strain increment.
In this case the total strain increment must be obtained by iterating equation 58 in the form,

Aegy(r) = Aey+ %Z;XZZ’ uiij (€) /J / 6i£'(r_r') DZITSACTS (r Ae), (x/ ))
— 6Dy (1) [As'fs (r') — Acys (r’, Ael, (r’))] } dV (r') (63)
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The first iterative guess can be taken as Aef,(r) = Ay, and the right hand side evaluated
to give an improved guess for Ael,(r). This process is then continued with

AeT — A 1 = iE(r-r) [pm A ' LAET (¢
{ Ekl(r)}A+l = Byt 7 ZHPZ:OZ guiij (€) /1;//6 { ijrsECrs (1' ) { Epg (T )}A) -
~ 6Dy, (7)) [{ AL, (1)}, — Acrs (v, {Ae, (r')}A)] }dv (') (64)

until the A and (A + 1)" iterates of Aefy(r) converge.
Equation 59 is not so convenient for iteration as equation 58 when Aef (r) depends on
Aeli(r). Tt is always necessary to know the total strain increment Al (r) in order to calculate

the inelastic strain increment Acf, (r’ , Al (r’)). But equation 34, viz.,
D7y Acky(r) = DjyAck (r, Az—:gq(r)) — 6 Djjp(r) [Aar‘,':,(r) — Acy (r, Aan(r))] (65)

is an implicit equation for Aef,(r) when the iterated quantity, Aeg,(r), is given. Equation 63
is therefore the appropriate equation to iterate when the inelastic strain increment depends

on the total strain increment.
The procedure for solving the implicit integral equations in 58, 59 and 63 is described in
section 8.

5 Green’s Function Approach

5.1 Green’s Solution of Navier’s Equilibrium Equation

The equation of continuing static equilibrium for the composite material throughout an ap-
plied strain increment is given by
d(Agy;(r))
——— 2+ Afi(r) =0 66
S L) (66)
where A f;(r) is the incremental body force per unit volume of the composite material. From
equations 35 and 66 we obtain

o Ael(r
™ ( hiw) _ o ( ;?szdz(f)) — Afi(r) (67)

Uk By oz;

which is equivalent to equation 37 in the absence of the incremental body force A fi(r). From
this equation it is clear that the divergence of the stress variation produced by Aej,(r) may be
formally regarded as a fictitious body force increment, analogous to Af;(r), which is applied
to the homogeneous matrix material with elasticity tensor D};;. The theory of elasticity for
homogeneous materials is generally concerned with the solution of the homogeneous differ-
ential equation 67—Navier’s equation—when the right hand side is zero. When body forces
are present the standard method of solution is to obtain the displacement solution at r due
to a unit body force applied at r’. This solution is given by the Green’s function G;; (r — r')

15



which gives the displacement in the ¢*" direction at r due to a unit point force applied in
the j* direction at r’. For a distributed incremental body force Af; (r’) the displacement
increment at r is obtained by summing the results for the distribution in the form

Aufe) = [ e =185, V@) (68)

The integration extends over the whole volume, V', of the composite material which may be

regarded as being of infinite extent.

When Af; (r') = 0 we know that the displacement solution is Aul(r) = Add(r), cor-
responding to an applied uniform strain increment AE” on the mﬁmte boundary of the
homogeneous matrix. For an effective distributed body force increment given by the right
hand side of equation 67, with A f; (r’) = 0, the solution for the total displacement increment

Aul(r) can be written as
0
T — 0 _ ) W2 m * / /
Au] (r) = Aul(x) /V// Gon (k)57 ( Dlfmnn(s9) 4V () (69)

This corresponds to equations 17 and 39, the volume integral corresponding to the perturbed

displacement increment Awu;(r) in 17.
For a material which is homogeneous with elasticity tensor D7}, the Green’s function

satisfies the differential relation (cf Appendix A, equation A.11),
mw PGy (r =1
ikl oz j(?.’l?l
where §;,, is the Kronecker delta tensor given by‘5,~m =1ifi=m and §;, = 0if i # m, and
& (r —r') is the three dimensional Dirac delta function defined by the relation

) S S(r—1) =0 (70)

§(r—r') =6(xy — x}) 6 (z2 — x5) 6 (x5 — z3) (71)
By applying the Fourier integral techniques in Appendix A, the Green’s tensor is shown to
have the Fourier integral form,
&P*K M; (€) kv
—iK.(r-r’)
0= [ s (72
in which the inverse Christoffel stiffness tensor (cf. [33]) M,; " (€) is defined by
;! (C) = ( quCPCQ) (73)

with ¢, = K,/\/KnKn = K,/K being a unit vector in the direction of the Fourier wave
vector K, and K = \/K,,K,, denoting the magnitude of the wave vector K.
Making use of the relation 7 )
0
(Dlinseinn @) = 57 (G e~ ¥) Dl (1)) -

6G,k (r—1') -
61:1 DklmnA5 ( ) (74)

0
Gik (I’ — r’)’a?

{
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we may write equation 69 in the form

AuT(r) = du( /f/ 52 (Giur ) Dl (1)) AV (') +
I 20, O =) Dy e () 4V () (75)

The first volume integral can be transformed into a surface integral via Gauss’ divergence
theorem, viz.,

///8 ( (r — ') D A (T ) //nz —r')D Aeh (') dS(r)

(76)
The surface integral extends over the entire outer surface of the “infinite” matrix material.
Since this is assumed to be at an infinite distance, all the integration points r’ in the surface
integral are at an infinite distance from the field point r and Gy (r —r’) = 0. Thus, for an
infinite body the first volume integral in equation 75 vanishes. This would not be the case
for a finite body in which the field point r is close to the surface integration point r’, and
the volume (or surface) integral would need to be retained for these situations. In this case
other surface integrals would arise (cf. Appendix D, equation D.27) due to the application of
boundary incremental displacements or surface tractions on the surface of the material.

From the properties of the Green’s function,

Gy (r—1') _ 0Gy (r—r')

= 77
Ox; ox; (77)
which follows since G is a function of
r—r = (x,—T),Ts — Ty, T3 — T3) (78)
Equation 75 may then be written alternatively as
oG,
() = dufle) - [ 4500 ) Dl () dV(2) (79)

But Aeli(r) =3 (B (Au,T(r)) /0z;+ 0 (Auf(r)) /8m,-), so that by differentiating equation 79
with respect to z; and z; and taking half the sum, we obtain

eT(r) = Al + / [[Uig (= ¥') Difneis () AV () (80)
which, by means of equation 34, may be written as
AeT(r) = Al + / / / Usgna (¢ = ) { D, Ay ()
— 6Dy (1) [Aers (r') — Acys (¢ )]} av(r’) (81)
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An equivalent integral equation, involving the eigenstrain increment Aej;(r), can also be
obtained by using equation 34 to eliminate Aaz;(r) from equation 80, which gives

D Ack(r) = DfgAcu(r) — 6Dyu(r) [l — Acy(r)] -

— 6Dy u(r // Ukimn (r — 1) DT Aet, () dV (r') (82)

In the preceding equations the operator,

no__ 1 82G,-k (I‘ - I‘I) BQij (I‘ - I'I)
) N —5 ( 8a:j8:£, + (31’161‘1 ) (83)

Uz’jkl (I‘ —-Tr

gives the ij component of the strain increment at point r due to an applied stress increment
component k! at point r’ in an infinite homogeneous medium with elasticity tensor D, and
Green’s function given by equation 72.

5.2 Equivalence of Perturbed Strain Increment

From equations 18, 56 and 80 we sce that the perturbed strain increment, Aeg/(r) = Ael (r)—
Ae?,, is given by the equivalent relations,

Acu(x ZZZ i // D, A, (1) €€ v (v) (84)

or

Acu(r /f Usimn (£ — ¥') D Ae?, (r') dV (r') (85)

The volume integral in the Fourier series representation extends over the volume, Vi, of
the unit periodic cell and the summation extends over the integers n, = 0, £1,+2,..., efc,,
where p = 1,2,3. In the Green’s function approach the volume integral extends over the
entire infinite medium, i.e., over all the periodic cells comprising the material. It is shown in
Appendices B and C that the Fourier summation expression in equation 84 can be converted
into the Green’s function expression in equation 85 by means of the Poisson sum formula.

From equation 34 it is evident that if the elastic properties of the fiber are the same as
that of the matrix, then §D;ji(r) = ¥(r) (Difjk, — DZ‘H> = 0, in which case

AE“(I‘) ACM(I‘) (86) .

is known explicitly without having to solve the integral equation. From equations 58 and 81 it
can also be observed that AeT(r) is known explicitly when 6Dy (r) = 0. The explicit relation
in equation 86 holds only when an explicit forward difference method is used to integrate the
viscoplastic constitutive relations. For implicit integration methods in which the inelastic
strain increment Ael(r) depends on the total strain increment Acj(r), equations 58 and
81 show that even when 6Dy (r) = 0, the equation to determine Aef;(r) is still an implicit
integral equation.
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6 Self-Consistent Method

6.1 Outline of Self-Consistent Method

In this section we establish a self-consistent relationship between the overall “effective” stress
increment, Aa%, and the applied strain increment, AE?J-, for a matrix material which has
cylindrical fibers embedded in it in a periodic fashion.

From equations 34 and 61, this relationship can be written as

1
Ac), = D Ae); — V/// {Dg-’klAck, (r) — 8D;ju (r) [Aefl (r) — Acy (r)]} av(r) (87)
c A
where the total strain increment is determined from equation 81 in the form,

Aeli(r) = Aely + ///Uklmn (r—r') {D,’Zm,SAc,S (r') —
v

— 8D panrs () [AeT, (1) = Acyy ()]} AV (X) (88)

These equations can be solved in an approximate fashion by means of a self-consistent
method in the following manner.

First, assume that the unit periodic cell consisting of a cylindrical fiber embedded in a unit
matrix cell, Fig. 5, is replaced by a cylindrical fiber (of radius = a) embedded in a cylindrical
matrix (of “effective” radius = b) as depicted in Fig. 6. The other unit cells outside the given
unit cell —i.e., the rest of the composite—are then smeared out into a uniform matrix material
whose overall “effective” constitutive properties are the volume average of the constitutive
properties of the constrained unit periodic cell. The “effective” constitutive properties will
be transversely isotropic if the fibers are arranged in hexagonal arrays or tetragonal if they
are arranged in square arrays.

Second, assume that the total strain increment, Aeli(r), and the strain increment repre-
senting the deviation from isothermal elastic behavior, Acy(r), are spatially constant in the
fiber and matrix phases of the unit cell. These constant values (different in the fiber and
matrix of the unit cell) are taken to be the volume averages over the respective constituent
volumes of the fiber and matrix phases of the unit cell.

The composite now consists of three constituent phases, viz, the fiber, matrix, and
smeared out average phases. If the elasticity tensors of these phases are denoted by D{jk,,
D7y and D, jxi, respectively, then the elasticity tensor at any point r in the composite can be
written as

Diirs(r) = Diirs + 6 Dpars(T) (89)
where
§Djirs(r) = 6D}y, = Diyyy — Ditrs (90)
if r is in the fiber;
6Diirs(r) = 6Dy}, = Digyrs — Diars (91)
if r is in the matrix; and B ,
8Dy1rs(r) =0 (92)
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if r is in the surrounding smeared out “effective” material.
The fiber and matrix constituent phases now represent fictitious body forces in the infinite
“effective” medium with elasticity tensor an,, and the total strain increment is obtained from

the solution of the integral equation,

Aeg;(r) = Ae?j + ///Uijkl (r — ') DyrsAc?, (x') dV (1) (93)
v
in which
—D_klv‘sAe:s (rl) = DyrsAcrs (r’) — 8§Dy (r,) {Aez; (r’) ~ Acyy (I‘l)] (94)

6.2 Strain Increments in Three Phases

We now make the approximation that the strain increments in the three phases are spatially
constant and equal to their respective volume averages, so that if r’ is in the fiber Asz; (r")
and Ac;; (r') are replaced by

T _i‘ T (. ! .
Al(f) =5 // AGE W) (95)
and
Ay ()= // Aci; (r') dV (r') (96)
so that, from equation 27,
Aci;(f) = Aez)(f)+a*fAT (97)

with
o)/ AT = of,AT + (T —To) Aad; —
( UU) ADklmn ( ( ) - E:mn(f) - Ot (T TU)) (98)

If ¥’ is in the matrix the relations are replaced by

Ach (m) = ¢ / / AeT (¢') dV (r') (99)

and

Bey; (m) = 5 f / Ac; (r') dV(r') (100)

where

Acij(m) = Aeg(m) +a"AT (101)
and
(Y;ijT = aZlAT + (T — TO) A m
— (Dp) ADR. (e ( o(m) = b (m) - aft, (T - To)) (102)
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If r is in the smeared out “effective” or homogenized medium the corresponding results are

_ 1
Asg = Aey); = 7// Ael (r') dV (1) (103)
s V.
and .
Eij = ‘—/*/:/ AC,'J' (I") dV(r') (104)
s v,
where L s
ACU = Aeij + GJAT (105)
and

a;AT = ;AT + (T - To) Bay; -
— D01 BDktmn (€% — En = T (T = Tv)) (106)

The volumes V}, V,, and V; refer to the volumes of the fiber, matrix and smeared out medium,
respectively. If V, is the volume of the unit cell and V' denotes the total volume of the entire

composite material, then

Ve=V; +V, and V=V +V,=V+Vp+ Vs (107)

6.3 Applied, Homogenized and Volume Averaged Increments

At this point it is important to emphasize the following distinctions. First, the strain incre-
ment applied to the composite is denoted by Asgj which causes an incremental stress response
Aa?j. To obtain the overall “effective” constitutive equation these are equated to the cor-

responding volume averaged quantities, <A€£> and (Aoy;). In the “effective” homogenized
medium all quantities are denoted with overbars.
At any point r the appropriate constitutive relation is

Aoyy(r) = Dir) (Aek(r) — Acw(r)) (108)
If we volume average this relation over the unit cell we obtain
(Aoyj) = <DijklA5Z1> — (DyjriAci) (109)
In the homogenized phase the constitutive relation can be written as
B, = DijuBen, — Diwlion (110)

Since the strain increment _A—é,ﬁ in the homogenized phase must correspond to the applied
strain increment Ae},—as in equation 103—and the homogenized stress increment Ao;; must
correspond to the overall bulk stress increment Aa?j, we write the constitutive relation for

the homogenized phase as L o
Aa?j = DijkiAsgl — DijrAcy (111)
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6.4 Requirement for Self-Consistency

For self-consistency we require that the volume average of the microscopic constitutive relation
in equation 108 over the unit cell, viz. equation 109, should correspond to the constitutive
relation for the overall “effective” homogenized medium in equation 111. That is,

AO’% = <DijkiA5{[> - <D,‘jHACk1> = ﬁijklAggl — EijklA—Ckl (112)

for self-consistency. Under the approximation that the strain increments Ae’, and Acy,; are
spatially constant in the constituent phases, we obtain

1 — —
AU?j = V///Dijkl(r) (AE{I(I‘) - Ackl(r)) dV(r) = DijklAfgl - DijklACkl (113)
Ve
or
(4] V T Vm ™m T
Aoy = V. Dz_)kl (Afkl(f) - ACkl(f)) + VDijkz (Agkl(m) - Ackl(m))
= Diuley — Dijulcn (114)

At this point the elasticity tensor D; ;jkt and the deviation strain increment Acy in the homoge-
nized medium are unknown quantities. In the next section we will solve the integral equations
for the total strain increments in the fiber and matrix phases, Aej)(f) and A&l (m), and we
will find that these values depend on the quantities D-ijkl, Ag}, and Acy; in the surrounding
homogenized medium. Then, by equating the coefficients of A}, on both sides of equa-
tion 114 we obtain a relationship for the unknown elasticity tensor ngkl of the “effective”
homogenized medium. The value of the unknown deviation strain increment Acy in the ho-
mogenized medium can then be obtained by equating the terms independent of AeY, on the
left hand side of equation 114 to the corresponding term ﬁijklA_ckl on the right hand side.

We now obtain the total strain increments Ael (f) and Ael;(m) in the two phases of the
unit cell. First, consider the total strain increment in the fiber phase.

7767.5 Total Strain Incfément in Fiber Phase

Equation 93 can be volume averaged over the fiber phase to give
1
T e ikl (v — 1) Dirs Ae*, (2 ’ 115
V// Aeg;i(r)dV (r) = Ag;; + fov{ dV(r)wUkal (r —1r') Dy €rs (r') dV(r') (115)

where the field points r are in the fiber volume, V;, and the integration points r’ are in all
three volume phases (V = V; + V,, + V;). Equation 115 can be written as

AT (f) = AL +— /f v (r) ///U,,k, r — ') Dun A, () dV(r') +

+ ///Uukl (r — v') DyrsAel, (m) dV (') + ///Uzjkl (r — ') DigysQAcrs AV (r') (116)

‘/,T"

22

L

AW

MiN W e

|l

N

-




L1

'w '

L[

Hs

my
Li

B

"

i

M

-

1!

o

ir

T\IHM |

L1

[

in which Dy,sAc?, (r') has been replaced by

Dirs e}, () = Ditrslera(f) ~ 6D{yr, [AE](F) = Acra(f)] (117)

and

DitrsAct, (m) = DitreAcry(m) — 6D,y [AeT,(m) — Acys(m)] (118)

in the respective fiber and matrix phases, and by
EI<:l1x«1A5:s(3) = E.‘a:lrsA—Crs (119)

in the smeared out “effective” medium where 6Dy, (r') = 0.
In the first integral in equation 116 the field point r lies in the volume V%, and since

///Uiikl (r—r') dV(r') Dyyrs = Sijrs (120)

is Eshelby’s tensor (¢f. Appendix E, equation E.1 and [35]), which is a constant tensor
independent of r when the field point r lies within the cylindrical volume V included in an
infinite medium with elasticity tensor Dy,,,, we may write the first integral as

][Vt (€= 1) V(') Diaese1, (1) = Sirahess(£) (121)
Vy

The second volume integral extends over the volume V,, = V. — V} of the matrix phase. Thus,
for the second integral,

///U”“ (r — ') dV(r') DursQer (m)

Vi
- / / / Uyt (v — ') dV (') DareAe?, (m) — / / / Usit (r — ') dV(r') DygpsAe?, (m)
V. Vy
= SijrsAcr(m) — SijrsAer(m) =0 (122)

since the ficld point r lies in the cylindrical volume V; and therefore within the cylindrical
volume V.

We now have to deal with the last integral in equation 116. This integral can be written
as

/// Usjea (r = 1') dV (t') Diars By

8 0Gy(r—r1') 8 8Gu(r—r) R
- — Diirs e
//./ (333] axl + axi 8$l dV(I‘) klrs A Crs

- 0 9Gu(r=r) 0 9Gulr=x)\ iy g
/// ( 8([,’1 + 8.’])’ (9.171 dV(I‘ ) DHT‘SACTS

2
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which can be transformed via Gauss’ divergence theorem into two surface integrals: one over
the outer “infinite” surface S of the smeared out “effective” medium; and the other over the
inner surface of the “effective” medium, i.e., over the surface S, of the unit periodic cell. The
volume integral then takes the form,

///U”k’ ") dV (r') DrirsDcys

_ Gsz(r_r) *‘, ank(l'—I") I
/ Ik ( ) G ) ST ) a0 DB+

+ /_/ ( QGl—k(;x_'—) + nz ( ) QG&_@(?Z_IJ)) dS(r’) EHTSE”

where n} (r’) is a unit normal vector at point r’ on the surfaces pointing away from the volume
V. Now since the field point r lies in the fiber and the integration points r’ on the surface S
are infinitely removed, we have 8Gy;, (r — r’)/0z; — 0 on the outer surface S of the composite,
and the first surface integral can be neglected. If we write n; (r') = —n; (r'), then n; (r') is a
unit normal vector pointing away from the volume V. on the surface S, of the unit cell, and
we have, via Gauss’ divergence theorem and equations 77 and 83,

[[ftoute e ave) D

O0Gy. (r —1') n OGj (r—1) P —
// ( ) g, Tl T) dS(r') DyirsAcys

0 0Gu(x=v) | 0 3Cu(r=r)\ 1, 1p, Ac
—.//./ ( " ox; + ox! Az, dV(I‘ ) DyirsAcys

_ PGy (r — 1)  O*Gu(r-r) P
/.//2 ( 81']8.1'1 + 833,‘83317 ) dV(I‘ ) DlesAcrs

‘f// s — ) AV (¥') Doy
Ve

Since the field point r lies in the cylindrical volume V., the preceding equation takes the form,
///Uijkl (r —1") dV(r') DygrsDcrs = _/f/Uijkl (r — ') dV(r') DigrsDcrs
Ve Ve

or

///Uijkl (I‘ - I‘,) dV(rI) bklrs_A—C‘rs = _SijrsKErs (123)
Vs

where S, is Eshelby’s tensor for a cylinder with elasticity tensor D; Skl
From equations 116, 121, 122 and 123 we obtain

Acli(f) = Ay + “%// {SijrsA€:s(f) - SursEm} di/(r)
vy
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and since the quantity within the braces is a constant tensor,

Aeli(f) = Acl; + Siyrs (81, (f) — Bery) (124)

Now
| Dursde}, (f) = Duarscrs(f) = 6Dy, [Acli(f) = Acrs(f)]
so that

A&l (f) = Acra(f) — Dy 8Diynn [AT () = Acrn()]

and on substitution into equation 124 we obtain,

AT() = Bl + Sy (Aers(f) = Bery = Dy 8Dl [AE, (1) = Acma( )] )
Given that
Lijig = 3 (66 + 8;164)
denotes the fourth rank identity tensor for symmetric second rank tensors, the preceding

ecquation can be written as

[Iijmn + SijrsD 6Df ] Asgn(f) = A{-,‘(-). +

pgmn

+ Sijrs (Acrs(f) = Bers) + Sijrs Drapg 6Dlgrnn Acrun(f)

pqmn

which, by premultiplying each side with the inverse of the tensor in square brackets, gives

AE;I;(f) = [Iijmn + SijrsD 6D,{qmn] B {ASSM + Smnr.s (Acrs(f) - ZSE,.S) +

+ Smnklﬁk;;q 6qursAcrs(f)} (125)
The phase volume averaged stress increment in the fiber is then given by the relation
Aci;(f) = Dl (Ah(f) — Acu(f)) (126)

6.6 Total Strain Increment in Matrix Phase

Now consider a field point r in the matrix phase. From equation 93 we may write

Ae Af,J + ///( ikt (v — 1) dV(r") Dyrs Al (f) +

+ ///U,’j},-/ (I‘ - I',) dV(I‘I) 5HTSA€:S(m) + ///Uijkl (I‘ — I',) dV(r') Eklmz:‘,.s (127)
R Vi
Since V,,, = V. = V;, the second integral can be written as

///U”“ (r — r') dV(r') Dyrs ey, (m)

= ///-Ujjkl (r — ') dV(r') Dyrs Al ,(m) — //:/[]ijkl (r — ') dV(r') DursAct,(m)  (128)
U v
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and from equation 123 the last integral in equation 127 may be written as
// Lrijlcl (I‘ - I',) dV(r’) _D_klrsmra = _///Uijkl (I‘ — I") dV(I‘,) bklrsA—Crs (129)
Vs Ve

so that equation 127 is transformed into

AeT(r) = A% + / / / Uisea (£ = 1) dV (') Diare (B, () — Acty(m)) +
Vi

+ [[[Vin e = %) V() Dua (A, (m) ~ B (130)

Averaging equation 130 over the matrix phase gives

Acl(m) = Ael, + o / [[av() { J[[Vins (8 = ¥') V(') Dy (B3,(£) — Aty (m)) +
m Vf
+ / / / Ut (r = ) dV (') Diars (A, (m) — Ez,s)} | (131)
or, since V,, =V, — V},

AT (m) = Ac? +—— // av (r //fU,Jk,(r—r)dV( ) Diars (A1, (£) — Act,(m)) +

+///dV(r ///Uukl r —r') dV(r') Dy, (Agrs(m) AC”)

— ///dV r)///UUk, (r —1') dV(r') Dygrs (Afra(f) Asrs(m))

///n’V ///Ul,mr—r 4V (r') Digrs (Ael(m) - Bey) (132)

Now consider the first integral in equation 132. We may interchange the order of the
volumne integrals so that

// v (r ///U,JH (r— 1) dV(r )—// dV(r)///U,Jk,(r Ndv(r)  (133)

Now r and r’ are dummy integration variables, so that on the right hand side of equation 133
the variables may be replaced with the integration variables x and y, viz,

///dv r)/f/ka, r—r) dV(r /f/dv y)///Uukz(x y)dv(x)  (134)
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But, from equation F.5 of Appendix F,

Ui (x —y) = Uiju (y — x)

// v (r ///U,,k,(r—r ) dV(r /f dv (y) ///U,Jk,(y—x ydV(x)  (135)

and the dummy variables y and x may be replaced with the variables r and r’ to give

/ / dv (r) / / / Uy (r —¥) dV(¥) = / / dv (r) / / / Ugu(r— 1) dV(r)  (136)
v 7 Vs Ve

This relationship is discussed in Mura’s book ([24], page 336) where it appears under the
Licading of the Tanaka-Mori theorem.

From equation 136, the first integral in equation 132 is integrated over the field points r
within the cylindrical volume V;. Since these field points lie within the cylindrical integration
volume V.. the first integral in equation 132 may be written as

Vim J[[av @ [V (0 = ) V() Daes (82,(5) = Aty (m)
vy Ve
i [l sir (at5) = i) aves

Y
V Sz]re

In the second integral in equation 132 the field points r lie within the cylindrical volume V.
and so the second integral may be written as

Vim / / / v (r) / / / Ussii (v — 1) dV (') Do (Aet, (m) — ey, )
Ve Ve

_ V_lm / / / Sirs (Bely(m) — Ber) AV ()
v
~ V.,

Ii1 the third integral the field points r lie within the cylindrical volume V; and so

o [[av @) [V (r —¥) V) Dy (Be1,(8) = A (m)
) !

S
e
1

so that

(A, () — Act,(m)) (137)

=" 8ijrs (At (m) — Ac,.) (138)

_ ‘L// [ Sie (Be(£) = At (m)) AV (r)

- ;f Surs (Beiu(f) = Aety(m) | (139)
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Finally, in the fourth volume integral, the field points r lie in the cylindrical volume V4.

Since this lies within the cylindrical integration volume V., we have
1 AN Y * A
o / / / v (r) / / / Usskt (r = ©') dV (') Datrs (el (m) — Bers)
m v, V.

_ T/l?; / [ Sisrs (B2, (m) = Bevy) aV(x)

V —
L 77 Siirs (Aet,(m) — By, (140)
We thus obtain from equations 132, and 137 to 140,

Asz;(m) = A ://: Sl]T'S (As:s(f) - As:s(m)) +

Ers) -

( Ae:s(m>) -
e (D1, (m) — Bery)
V.-V, .
= AE?J' + fSlJ"-g ( Ers (m) - ZErs)
or | B
Asz;-(m) = Ae); + Sijrs (Ae,’fs(m) - Acrs) (141)
This relation for the total strain increment in the matrix phase is similar to that for the fiber

phase given in equatlon 124. By following the steps leadlng to equation 125 the expression
for Ae];(m) can be put in the form

A€;C(m) = [[ijmn + SijTSD 5D;anmn] - {A‘Egm + Smnrs (Acrs(m) - ers) +
+ Srnkt Dypg 6 Dr Birg(m) } (142)

pars

The phase volume average stress increment in the matrix is then given by the relation

Aci;(m) = Dy (Aef(m) — Dew(m)) (143)

6.7 Overall “Effective” Constitutive Relation

As stated in section 6.4, for self-consistency we require that the volume average of the con-
strained m]cromechanlcal constitutive relation over the unit periodic cell should correspond
to that for the “effective” homogenized medium. From equatlon 114 we require that

V Vin
Adyy = DL (Acl(f) = Bew(f)) + 7 Dy (Ael(m) — Acu(m))
= Ez,szEkg—Eijkl_A—zkl (144)
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where the total strain increments in the fiber and matrix phases are given by equations 125
and 142 as

AT(f) = [Ljmn+ SireDrapg6Dlgmn] {0 + Sonurs (Bers(f) = Ben) +
+ Skt Dyipg 6 Dory Acra(£) } (145)
and
T m 171 0 P
Aefi(m) = [Liymn+ SijrsD,epg 6Dt~ { A% + Sranrs (Derg(m) — Beyy) +
+ Skt Digpg 6D Acy, (m)} (146)

with the deviation strain increments defined in equations 97, 101, 105 as

Acy(f) = Aef(f) + aif AT (147)
Acy(m) = Aef(m) + a; " AT (148)

and
Ac; = Re,, +TLAT (149)

By inserting equations 90, 91, 145, 146 147, 148 and 149 into equation 144 the relationship
for self-consistency requires that

Ac) = Ayudel — {AguSursBe,, = ByrAeh(f) = Cijrael(m)} -
- {Aijklsklrsa:s = Bijrsa:.{ - IJTSars }AT

_ —_ P - .
= DijklAegl - DijklAEkl - DijklaklAT (150)
in which
Vf f —_— —1
A;jkl = V Dl_}TS [ rskl + Srqqupqmn (Dmnkl Dmnkl)] +
va m m oY -1 \
+ ,[/ Dz]rs [ rshi + S’I‘Sququ”n (Dm”,\.l — D,,,,”d)] (151)
Biw = Upf SvpDt (DL~ Doan)]
ikl = V ijra [ rskl + 78pq ™~ pgmn ( mngh mnyh)} X
. _ v,
X [Sghkt + Syhab Dase (DL - Dcdkt)] - VfDifjkl (152)
and
| Z5 m — -1
Ct]k‘l - _‘-//_Dz]rg [ TSkl + Srququmn (Dmngh Dmngh)] X
- 2 V;" m
% [Synkt + Syt Dapen (Dt = Deart)] — v Diju (153)
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These results for B, and Cyjn can be simplified somewhat. We write B;;x as

Vi

Bijk! = chijkl (154)
where
Yijkt = szqu (Tpgrs + qurs)—l (Srski + Xrskt) — D{jkl (155)
and
Xpars = Spamn Drngh D2 (156)
We then obtain
Yijkl + Difjkl = Difqu (Ipgrs + qum)—l (Srskt + Xrskt) (157)
or
(D,fju)al (yklmn + DI):lmn) = (Lijur + Xijt) ™" (Skimn + Xiimn) (158)
This result simplifies to
(Difjkl>-l Yktmn + Lijmn = (Tijrr + Xijn) ™" (Sktmn + Xktmn) (159)

which can be premultiplied by (Ipg:; + Xpqis) to give

—1 .
(Ipqij + quij) (Dz{;kl) Yelmn = Spqmn - Ipqmn (160)
from which
Yijkt = Difqu (Ipqra + qurs)_l (S'rskl - Irakl) (161)
From this result we find that B;;u and Cjjx can be written in the simplified forms
1% _ — -1
Biju = 'ﬁszfqu [Ipqgh + SpareDromn (Drfnngh - Dmngh)] (Sgnkt — Ighit) (162)
and v
m m e | m — -1
ij’*‘l = V iipq [Imgh + SPQTSDrsmn ( mngh — Dmﬂgh)] (Sghkl - ghkl) (163)

Equating the coefficients of A&}, in equation 150 for self-consistency then requires that
ki
Dijr = Aiju (164)

which, from equation 151, produces the implicit relation

D-z'jlcl = %D{jm {Irskl + Srquﬁp;:nn (Dg;mkl - D.mnkl):’ - +
+ 22D, [T+ Srop Dy (D = D)) (165)

The value of homogenized “effective” elasticity tensor D;j, may be obtained from this im-
plicit relationship by iteration. Naturally, when the self-consistent method is embedded in a
nonlinear finite element program, this iteration would be done outside of the code and the

explicit values of D,jx would be used in the program.
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For self-consistency we also require from equation 150 that
“—P = P
AijgSpar1 BEy — Biyuefy(f) — CiyuAefy(m) = Dijuley (166)

and
— *f am __ — %
AijpaSpaeiliy; — BijAayy — Cijulog” = Dijritig (167)

which, by setting A;;,; = Dijpg, reduce to

_ e -1 ’
AEi? = [Diqu (Spqrs - Ipqr.s)] (BT'SklAEIZ(f) + CrsklAslﬁ(m)) (168)
and — -1

o = [Diqu (Spqrs - ]qus)] (BTSkla;{ + Crs’da;lm) (169)

ij

The overall “effective” constitutive relation for the homogenized composite in equation 150
is now easily computed.

If a forward difference algorithm is used to evaluate the viscoplastic strain increments,
the only implicit equation which occurs in the formulation is that for the elasticity tensor
of the homogenized medium given in equation 165. It is, perhaps, ironic that in deriving
the highly nonlinear viscoplastic constitutive relationship for the homogenized medium, the
only iterative procedure required is that for the elasticity tensor. This implicit elasticity
relationship also occurs in the subvolume method due to the occurrence of the tensor 8 D;jx
in the volume integration. The implicit nature of D;;y, is due to the fact that the homogenized
clasticity tensor is found by volume averaging the constrained elastic properties of the unit
periodic cell, and these constrained properties, in turn, depend on the elasticity tensor Diju
of the homogenized constraining medium.

The constitutive relations given in equations 126 and 143 are used to update the stress-
strain history in the constituent phases, whilst equation 150 is used to update the stress-strain
history in the homogenized self-consistent medium. These relations, which contain AEE( f)s
A;‘E(‘m) and D, 1, depend on the Eshelby tensor Sjj., for the homogeneous smeared out
medium, which is defined in equation 123 as

Siirs = / / / Uit (r = ') dV (r') Digra (170)
/

when the field point r lies within the cylindrical volume, V. The “effective” homogencous
smeared ont medium for a composite with cylindrical fibers will exhibit transverse isotropy if
the fibers are arranged in hexagonal arrays, and it is shown in Appendix E that the Eshelby
tensor for a transversely isotropic cylinder, whose x3 cylindrical axis is normal to the plane
of transverse isotropy, has the component form,

501111 + Diize

g _ 171
H 8Dnn ' ( )
Sa22 = Sun (172)
3Di122 — Dt
S = — 17
1122 8D11w1 (173)
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Diss

S = — 1

2233 5Dy (174)
Sizz = Sass (175)
Spo11 = Snaz (176)

3D, - D

Siz12 = S = 1181151111 = (177)
Sazaz = Sozze = Si313 = S = % (178)

with all other S;; = 0. If the fibers are arranged in tetragonal arrays, the Eshelby tensor
will exhibit tetragonal symmetry. This case is currently being worked out.
7 Integration of Self-Consistent Model

Fourth rank tensors can be written in Voigt notation as matrices and second rank tensors as
vectors, (cf. Appendix 2 of Mura’s book, [24]). For example, with the notational changes,

AO’; = AO’H, Aag = AO’QQ, AO’g = AO’33, A0'4 = AO’23, AO’5 = AO’13, AO’G = AUIQ
and
A€1 = AE]I, A€2 = A622, AE3 = A€33, A64 = 2A623, AE5 = 2A€13, AEG = 2A612

Hooke’s law for an isotropic elastic medium can be written as

( Aoy ) [ A+ 2u A A 0 0 07 ( Ae; )
AO’Q A A+2u A 0 0 O AEQ
AO’3 _ A A )\+2,U« 0 0 O AE3
Yas, (5| o 0 0 14 0 0/|) A [ (179)
AO’5 0 0 0 0 22 0 A€5
| Acg 0 0 0 0 0 u]| Ass

For a transversely isotropic medium-—such as the smeared out “effective” matrix for hexagonal
fiber arrays —the relationship can be written as

Dun Duyz Duss 0

0 0
. \ o ol Agg )
ﬁg} Dz _121111 Disz 0 0 0 ( A?
Aa-z Diugs Duss Dssss 0 0 0 A52
{ 3 fz 0 0 0 D1313 0 0 ¢ 3 > (180)
AO’4 oy AE4
0 0 0 0 Disy3 0
AO’g, ﬁ —E AEs
| Ao 0 0 0 0 0 (&z—ﬂ) | Acgg |

from which the isotropic results can be recovered by taking Dy = 2uv(1 - v)/(1 — 2v),
D3333 = 2[”/(1 - V)/(l - 2V), D1122 = 2/11//(1 — 21/), D1133 = 2/,“//(1 - 211), and D1313 = M.
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The Eshelby tensor [35] relates the constrained strain increment, Agg;, in an inclusion
which undergoes a transformation or eigenstrain increment, Aej,, in an infinite medium with
elasticity tensor Dk, in the form

‘ iy
Wi

oo oo oororror

[

*
AEZ = ijk[Agkl

In Voigt notation we have

Agl = S;A¢;

where the Eshelby matrix takes the form,

-
5D1111 + D122 3D1ia2 — Diin - Duuss 0 0 0
8D 8D1111 2D
3Dy122 — Dun 5D1111 + Dyj20 D33 0 0 0
8Dy 8Dy 2Dy
0 0 0 0 0 0
0 0 0 2(1) 0 0
4 1
0 0 0 0 2(1) 0
3Dy — D
0 0 0 0 0 —
i ( 8D

The integration of the self-consistent model then proceeds as follows.

1. Initialize the starting variables: time t = 0; temperature T' = Tg; overall
“effective” stress and strain 0 = €0 = g = 0 for i = 1 to 6; stress and strain in the
respective phases o;(f) = eZ(f) = el (f) = 0, and o;(m) = €l (m) = &l (m) = 0
for i = 1 to 6; equilibrium stress in the respective phases Q;(f) = Q:(m) = 0 for
i = 1 to 6; drag stress in the respective phases K(f) = Ko(f) and K(m) = Ko(m).

2. Compute the overall “effective” elasticity matrix iteratively from the relation

D, = Vol [s + SuDi (0, Dw))
+ %’:’ ik [5@' + Sklﬁl:nl <D31'j - _D""J')]*l

where 6é;; is the Kronecker delta matrix, bx; =1for k=jand ;=0 for k # 7,
and the Eshelby matrix S;; is given in equation 182.

3. Start the loading history step. Evaluate the inelastic strain and state vari-
able increments in the fiber and matrix phases from the unified viscoplastic con-
stitutive relations. Any unified viscoplastic model may be used. Such relations
may have the following form:
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(181)




In the fiber the inelastic strain increment is

s(f) - f)) 2 Goalr) = 04(9) (350 — ()
() K(f)

nf—1

Aef(f) = (

where the equilibrium or back stress increment is calculated from the relation
AQ(S) = of Al () — of /30D (£ A (1) u(f)
for i = 1 to 6, and the drag stress increment from
AK(f) = [of — of (K(f) — Ko(f))] /3AF (£ AL(S)

In the matrix a similar set of constitutive relations can be used, so that

n™-1

b sim) = Qum) |V 3 (35a(m) = () (54(m) — Qy(m)
Ag; (m) = ( K(m) ) K ()

AQ,(m) = o Ael(m) — oF'\/2AeP (m) AeP (m) Qi(m)
for i =1 to 6, and
AK(m) = [¢f — of (K(m) — Ko(m))] /3Ael (m) A (m)
The quantities nf,n™, of, o7, for p = 1 to 4, are material constants associated

with the unified viscoplastic constitutive relations.
The deviatoric stress in the fiber phase is defined by

s5i(f) :Ui(f)“%(Ul(f)+02(f)+03(f)) for 1=1,2,3

and
s(f)=o0i(f) for i=4,5,6.

Similar relations apply to the matrix phase, viz.,
si(m) = oi(m) — 3 (al(m) + o2(m) + ag(m)) for i=1,2,3
and
si(m) = o;(m) for i=4,5,6.
4. Compute the “effective” inelastic and thermal strain increments from the
relations

Eip = {Eip (Spq — Ipq)}*l (quAEII:(f) + quAekP(m))

and
& AT = [Diy (Spe — Ig)| (B! + Cai™) AT
where v . o
qu = ViDt}fz [6,’;, + SimDmn (Dip - an)] (Spk - 6pk)
“and V . o
Cu= 307 6+ 50 (05 B 5=
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5. Fvaluate the deviation strain increments from the relations

Acy(f) = Ael'(f) + ol AT

Acy(m) = A

and

Acy =

!

and

{

relations

65(771) +a;"AT

Ae, +a,AT
6. Evaluate the phase volume averaged total strain increments
—_1 —_— -1
AcT(f) = [65+ SpDy (Df; - Dy)) {ae) +
—— _—_1 —
+ Sjq (Acq(f) - Acq) + SipDpq (Dfr - qu) Acr(f)}

Asl(m) = [6;+ 84Dy (D - qu)]‘l (A +
+ 85 (Acy(m) = Be,) + S;pDyy (D= D) Acy(m) |

T (Calculate the stress increments in the fiber and matrix phases from the

Aai(f) = D} (A (1) = Bes(f)

and

Aoi(m) = D7} (Ae?(m) — ch(m))

8. Compute the overall “effective” stress increment from the relation

Ac? = Dy, (Al — Be; —a;AT)

9. Update the variables:

o, (f,t+ At)
o; (m,t + At)
Q, (f,t + At)
Q, (m,t + At)
K (f,t+ At)
R (m,t + At)
el (f.t + At)
el (m,t + At)
el (f.t+ At)
el (m,t + At)
ol (t + At)

gl (t + At)
T(t + At)

10. Start new load step.

= 0 (fvt) + Aaz(f)
= o;(m,t) + Aog;(m)

Q. (f,t) + A(f)
Q; (m,t) + AQ;(m)
K(f,t)+ AK(f)
K (m,t) + AK(m)
7 (f+ 1)+ Ael(f)
el (m,t) + Aeip(m)
el (f,t) + Al (f)

= & (m,t) + Al (m)

o? (t) + Ao?
e2(t) + Ae)
T(t) + AT

35



8 Subvolume Method

8.1 Approximate Integration of Integral Equations

The determination of the stress and strain increments throughout the composite material
requires the solution of the integral equations

DZ-’szeiz(r) = :?szCkl(r) — 6Dyjiu(r) [Aeﬁ, — Ack,(r)} -
L o~3X g~ i€.(rr')
_ 5Dijkl(r)f/: ZHPZ:OZ Grimn (€) /‘/[/Dmn,sAers (r')e dV (r') (183)

or

DIyAety(r) = Dfulcu(r) — 6Diu(r) [Acd — Acu(r)] -

~ 6Dua(r) [[[ U (¢ = ¥') Dbty (¢) dV(E)  (184)
1%

at each field point r in the unit periodic cell.
Nemat-Nasser and his colleagues [25,26,27,28] have demonstrated the efficacy of dividing
the unit cell into a number of subvolumes and assuming that Ae},, (r') is replaced by

Aet (F) = Ash = L / / / Aer (r) dV (r') (185)

corresponding to its average value in the Bt subvolume.
Let there be N subvolumes in the unit cell, with M subvolumes in the fiber and N — M

subvolumes in the matrix. Then the preceding integral equations can be written as

DyAciy(r) = DfuAcu(r) — 6Diu(r) [Ack — Acu(r)| -
1 +o0 , i N . , ,
~8Dyu(0) 5 Y3 3 gumn ()€ 3 | [[[e7¢7 V() | Dbt (186)
‘/c np:O ﬂ=1 vﬁ

and
D Ack(r) = DiuAcp(r) = 6Diju(r) [Asgl - Ack,(r)] -

- 6Dijkl(r) i i (// Uklmn (I‘ - r,) dV(I")) D:nmnrsAE:f (187)
= Vi,

18=1

where V3, denotes the B subvolume in the ¢'" unit periodic cell, and it is assumed that the

field point r is in the first periodic cell for which ¢ = 1.
These equations can be volume averaged over the at subvolume in the unit periodic cell

to give
m o m o fe" 0 o a
D Qe = Dz’jklAckl - 6Dz’jkl [AEM - Acu] - 6Dz’jkl X

x %Ziz Giimn (€) (Vi(, [/ / [eier dV(r)) ﬁéVa (‘—% fv { [e-iex dV(r')) D™ Aef (188)
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fo1 \ -0 @
thlAE zgklAckl 6Dijkl [Agkl - Ackl] -

w,]k, ///dV(r / / /Uk,,,m r—r) dv(r) | D™ Ae'f (189)

1/31

In these equations the deviation strain increments Ackl are evaluated from the unified
xiscoplastic constitutive relation for the ath subvolume based on the stress value of(f) or
o (m) in the subvolume, according as the o™ subvolume is in the fiber or the matrix phase,
respectlvely The notation 6 D¢, also denotes the value of Dw ki — Dk
a'™ subvolume is in the fiber or matrix phase, respectively.
If we use Nemat-Nasser’s notation and write

; or 0 according as the

1 ‘
o . iE.r
Q" (&) = —VQ[//e dV (r) (190)
and denote v
fo = _Vf’ (191)

as the volume fraction of the o' subvolume, then the preceding equations may be written as

N
Z Dzr;rséaﬂ + 5Dz]kl Z Z Z Gkimn (C) mnrsfﬁQa (e) Qﬁ (_6) AE:E
=1 np=0
= D Ach — §D5y, [Ae), — Acg)] (192)

and

o0

.

- 1

> | D58 + 8D, S | < [[[av () [ [ [Vnimn (0 = ) avie) | DF,,.| Aet?
v, V,

1 q=1

= DAy — 6Dy, [Afgz - AC?/} (193)

where 87 = 1if @ = 3 and 6 = 0 if @ # 3, and no sums on «, 3 are intended unless
explicitly stated.

Now 6 D¢, = 0 if the o™ subvolume resides in the matrix. In this case equations 188 and
189 show that

Aei = Acyy for M<a<N (194)

Thus, only M unknowns (associated with the subvolumes in the fiber) are involved in Ae*?
and the N — M known quantities (associated with the subvolumes in the matrix) given by
equation 194 may be taken over to the right hand side of the equations. Equations 192 and
193 may therefore be written in the form
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M too
Z {D:;rsﬁaﬂ + 6D,sz Z Z Z Gklmn (C) mnrsfﬁQa (5) Qﬁ (_5) AE:E
A=1 np=0
= D;;k,Acg, - 5ng, [Ael — Acg] -
Z 8D Z Z Z Grimn (¢) Ditr FPQ* (€) Q° (—€) AL, (195)
B=M+1 np=0
and
M
m af _ , 8
,L; D”rsé + 6D1]“ Z ( ///dv(r)///Uklmn (I‘ r) dV( )) mnrs A'E'rs
= DIy Ack — 8Dy {Agk, _ Ackl] _
1 !
3= '\E[Jrl&D”kl —1 (Va///dv(r)///[]klmn (I‘ o r) dv ( )) mnrsAcﬂ (196)
Va Vaq
fora=1to M.

By defining the fourth rank tensor Ams and the second rank tensor bf; in the Fourier
series representation as

Azlzs Derséaﬁ + 6Dz]kl Z Z Z Gklmn C) DmnrsfﬂQa (f) Qﬂ ("5) (197)

np=0
and

b8 = DIyAck —8Dg, [AEQ, — Acy] -
N
- 2 6DZMZZZ Guamn (€) Do f7Q° (€) Q° (~€) A, (198)

B=M+1 np=0

or, in the Green’s function representation, as

AP = D:;‘r35<*5+6DUk, ( ///dV(r) / / /Uklmn(r—r ) dV (r )) m o (199)

and
B, = DIuAcy - DG [Aed - Ach] -
-y D3 (‘—} Jffav ) [[[Usimn (x =) dV(r')) DiprsACE, (200)
B Ve

B=M+1
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the integral equations can be cast in the form,

M
S AP Aef=b  for a=1toM (201)
B8=1

In Voigt notation the fourth rank tensor A%‘js can be written as a matrix A;;(;’, and the

second rank tensors Ae;? and bgj can be written as vectors Ae}? and by, so that

M
S AN =by  fora=1toM (202)
A=

This represents a system of 6M linear equations for the unknown values Aezﬂ , each matrix
clement af of the matrix A consisting of a 6 x 6 submatrix, in the form

[ [A“] [AIM] 1 ( {AE*I} 3 ( {bl} 3
Aa] e (A || (A {b?}
Aag] - ‘ {Agﬂ} ¢ =9 {b'u} > (203)
| [A;‘“] [AI;/IIH]J \ {AE*M} J \ {bM} J

where the submatrix elements are defined as
3 3 B 3 e} Jel
A‘f‘lﬁ A;'% A;;Z A‘I’% Ai‘sﬁ A‘;%
(a4 (24 [s 4 O, [2 4
Aglﬁ A225 Az% A24ﬁ _Az% Az%
o, o, [0 3 a s 4 a3
AS7 AT A3 Al Ay Age

Ayl = 204
AT g A .
AZY Agy Ass Asp Ass Ase
| A5 A AR A AW AR
and the corresponding column vectors as
( Ae? ) b7 )
Aes? b3
Ae?? b
) _ 3 8l _ 3
{ae = Act? \  and {b }_< b (205)
Aet’ by
\ AEE‘B / X \ bg /

This system can be solved by standard Gaussian elimination. However, if M subvolumes
are included in the fiber, these equations represent a 6M system of equations, whose solution
may pose storage problems on the computer.
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8.2 Solution of Integral Equations by Iteration

An alternative is to use equations 188 and 189 in an iterative fashion. As a first guess the
integral terms in 188 and 189 can be neglected and we obtain

ZJklAskl - Dl]klAczl - 5ngl [AEQ, - AC?I} fOI‘ a = ]. tO M

corresponding to the subvolumes in the fiber, and
D Aexr = DijgAck for a=M+1toN

corresponding to the subvolumes in the matrix. These relations can then be substituted
into the integral terms to yield an improved “Rayleigh-Born” approximation to D[, Ae;f for
« = 1 to N. This process can then be repeated until D}, Aeif* converges to within a user
specified tolerance. In essence we solve the equations

* _ m o fo3 0 a
Dz]kl ki }/\ = DijuBc — 6Dy [Asz - Acu] -

- Z D5 S S G () D Q% (6) @° (—6) {228}

np—O
Z 6D1.cht Z Z Z Gkimn (C) Dmm‘szQa (5) Qﬁ (_E) Acfs (206)
B=M+1 np=0 :

or

Diji {A5 } A1 = DijuAck — 6Dy [Asi, - Aczz] -

- Z 6Dz]kl ~ Via/‘;/ dV(r)[I/ Uklmn (l‘ - I") dV(I‘,) Dmnrs {Ae*ﬁ -
o Bg

s D ( ///dV(r) / / Vst (& =¥ dV(r’)) morscf,(207)

3=M+1

until the (A + 1) iterate differs insignificantly from the A'" iterate.

In the solution of the composite problem, two constituent phases, namely the fiber and
matrix phases, have been considered. For composites with a third chemically degrading phase
separating the fiber from the matrix, the preceding solutions may be modified by assuming
that, in the summations from 3 = 1 to M, some of the subvolumes, say from 3 = L to
M, pertain to the degraded material. It will then be necessary to postulate a viscoplastic

constitutive relation for this chemically degrading phase.
The total strain increment in the at* subvolume in the unit cell is then obtained by

averaging equations 57 and 80 over the o' subvolume to give,

Agi? = Asmz ZZngﬂm ©) £°Q* (&) Q° (—¢) D, Aer? +

np=>0

+ Z z Z Z Gkimn (C fﬁQa (6) Qﬁ ( 6) Dmnrq (208)

B=M+1 mp=0
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or
AP = A+ ;;i - /%/‘/dwr% //U (c =) dV(¥) | Dl Aetl
+ﬁ:M+§ // av (r) / f [Ukimn (5 = ¥') aV () | Dy, A, (209)
fora=1to N.

The constitutive relation, required to update the stress and state variables in each sub-
volume, is then given for the o'® subvolume as the average of equation 35 in the form,

Aol = DIy, (Ae — Aef) (210)

If we assume that N = 2, with one subvolume in the fiber and the other in the matrix,
then the theory is similar to the self-consistent model in which the strain increments in
the constituent phases are assumed to be spatially constant and equal to their respective
constituent volume averages. However, the interaction effects of the nearest neighboring
cells are fully accounted for since geometric periodicity is assumed in the integral equation
formulation and the material outside the unit cell has not been smeared into an “effective”

uniform material.
In both the Fourier series and the Green’s function formulations integrals of the form

/ / / KT gV (r) (211)

need to be evaluated over the subvolume, V,. These Laue interference integrals [39] can be
evaluated exactly if each subvolume consists of a circular or oblong cylinder. In the case of a
circular cylindrical fiber, each subvolume within the fiber would consist of an infinite cylinder
with a cross-section in the shape of an element of area in cylindrical coordinates, comprised
of two circular arcs with constant radii, r; and 73, and two radial segments along the lines
of constant 8, and #,. An attempt will be made to evaluate equation 211 for this type of
cross-section. If this proves too unwieldy, the subvolumes within the cylindrical fiber can
he taken to be cylinders themselves, with the cylindrical fiber represented as a “bundle of
sticks”. We assume that the actual fiber is comprised of subvolumes of the correct shape, but
we make an approximation in performing the volume integration over a circular cylindrical
subvolume.

9 Concluding Remarks

This document is the first annual report on NASA Grant NAG3-882. Much of the work on
which this report is based exists only as a mélange in the literature and we have therefore
attempted to write the report in enough mathematical detail that it can be worked through
without reference to the literature. In the second year we shall work out the required integrals
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in the formulations and program the methods in FORTRAN subroutines suitable for inclu-
sion in nonlinear finite element programs. In the third year we will determine the material
constants for various composite materials and provide a comparison of the present theory
with finite element and experimental results.

Our aim is to produce an end product which can be used in nonlinear finite element
and boundary element programs for analyzing the structural behavior of composite materials
under thermomechanical loading conditions at elevated temperature.

The viscoplastic behavior of periodic composites is analyzed by means of implicit integral
equations. These integral equations arise when the problem of determining the stress-strain
variation throughout a unit periodic cell in the periodic composite is solved by a Fourier
series or Green’s function approach. In this report we show that the Fourier series and
Green’s function approaches are mathematically equivalent by means of the Poisson sum
formula. By applying simplifying assumptions the integral equations can be solved in an
approximate fashion and used in structural analysis programs to analyze the overall behavior
of the composite. When the strain-temperature history at the “damage critical” location
has been determined from the structural analysis, this can be used to “drive” the “exact”
integral equations to determine the stress-strain history variation throughout a unit periodic

cell located at the critical location.
The unit cell in the periodic structure can be formulated to analyze fibrous, laminated

and particulate composites. By retaining the effects due to the application of displacements
and tractions at the surface of the composite it is also possible to analyze the behavior of thin
walled composite sections such as are found in turbine engine combustor liners and blades.
When this is done the integral equations which must be solved are basically those which are
used in boundary element programs. In the constitutive subroutine which we plan to embed
in the nonlinear finite element program to analyze the overall macroscopic behavior of the
composite, we effectively have a boundary element equation (specialized for the case of a
periodic composite) which we solve in an approximate fashion for the stress at the Gaussian
integration point when the boundary displacement on the element is prescribed by the finite
element program.

When the effects of damage are included in the constitutive formulations it will be possible
to embed the subroutine in an optimization program such as ADS in order to determine

optimum composite configurations.
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Appendix A

Properties of the Green’s Function

Consider a point force f; (r’) acting at the point r’ in an infinite medium with elasticity tensor
D;jii. From the definition of the Green’s function the displacement at the field point r due
to the point force fi (r') at r’ is

u;(r) = Gy (r—r') f; (/) - (A)
so that the infinitesimal stfain at ris
1 8Gij (I' it I‘,) Bij (I’ - I") 7
. I . A2
cimtr) = (280D 4 X L)) g ) (A2
and the associated stress is , o
O'kp(l') = kaimgim(r) (A3)
0Gy (1) , 0Gny (r ¥
g (r—1 mi (P —T
(1) = Diny (22 D) hey (A1)

Since the elasticity tensor Dypim is symmetric with respect to the indices i and m, the last
relation can be written as

BG," r-r ’ [
Okp(r) = kam—%(;—————)—fj (r") (A.5)
For static equilibrium, we must have
~ [[ np(®)om(x) dS(r) - (A.6)
s

where S denotes any closed surface in the infinite medium with an outward unit normal n,(r)
which surrounds the point of application of the point force fi (r'). An application of Gauss’
divergence theorem gives

/// 60’”’(r dV(r) // Dipin 282 1y v (r) @

0,0z,
Writing
5o () = £,0) [[[ 66 @~ v) avx) (A.8)
‘/
then gives the equilibrium requirement that
/ ' BzGij (l' — I'/) ’
fj(r)/‘;//{DkPimW + 66 (r —1') p dV(r) =0 (A.9)
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Since f; (r') and V are arbitrary, then

&Gy (r 1) .
kamW + 6kj6 (I‘ — l‘) =0 (A.lO)

is the differential relation satisfied by the Green’s tensor function. When multiplied by f;,
this is just Navier’s equation of elasticity with the displacement u,(r) = Gy; (r — r') f; (r') and
the body force set equal to &;f; (r') 6 (r —r').

Rearranging the indices, this differential relation can be expressed as

2

The solution to the differential equation can be found by applying Fourier integral tech-
niques. On multiplying the differential relation by e**+= dz, dz; dx3, i.e., by eXTdV(r), and
integrating over all space, we obtain

Do / / / P ColT) koo gy, day dag + iy / /OO / 8 (z1) 6 (2) 6 (z3) €K4% dxy dxy dzg = 0

83:,6%
(A.12)
From the sifting properties of the Dirac delta function the last integral is unity, so that

T 0 (0Gw(r) 0 (0Gu(m)
/_Z;/ {D”klaxl( Ox; +D”k26m2 Ozx;

0 oG (1‘) iKqx
+ Dijrag ( 63:)1 )} eXe%e dz, dzy dzs + 6 = 0 (A.13)

Integration by parts severally with respect to z;,r2,z3 then gives

// { [DijkleiKﬂl M} el K222+ Ka23) e, dipg + [Dijkzem”’- ——BG"”(I‘)} X
i 6(13j T1=—00 6:13j ey=—00

i(Kyx+ K3713) i K3 Bka(r) = i(K1z1+K2z2)
X € o d:l?1 d:l?g -+ Dijk36z 3 5—————6 € 171 2%2 dl‘l d.’Ez —
xj Ty=—00

) - oG oG _ .
///{ uuale (x), iKy + Dija akp( r); iK3 + Dijis 8kp@2K3} e'*e%a dzx) dzy drs +
Zj Zj
+ 61’1) =0 (A14)

The surface integrals are zero since 0Gy,(r)/0z; vanishes at the infinite lower and upper
limits of integration, so that one integration by parts yields the result,

O ka(l') K '
— .. Z RPN ikr . = A.
D,]kl[//zKl 52, e TdV(r)+ 6, =0 (A.15)
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A second integration by parts yields

+ Dij / / / 12K, K, Gip(r)e®T dV (r) + 6, = 0 (A.16)
or ~
Diju K K;Grp(K) = 64y (A.17)
where -
Gin(K) = / / / G (0)eET AV (r) (A.18)

is the Fourier integral transform of Gy,(r). By writing ¢ as a unit vector in the direction of
the wave vector K, we have

K K,
= =2 (A.19)
CJ KqKq K
in which K = /K K, is the magnitude of the K vector. Then
K K;
DkalK K KZGkP(K) (A20)
or N
KDy Gip(K) = 63p (A.21)
The Christoffel stiffness tensor M (c¢f. [33]) is defined by the relation
My (C) = DijuGi¢; (A.22)
so that R
KzMik(C)ka(K) - 6,'p (A23)
Premultiplying both sides by the tensor K-2M~! gives
Gy(K) = K2M;'(¢) (A.24)
The Fourier inverse of equation A.18 gives
Gii(r) = (27)3 / / / e~ K15 (K) d°K (A.25)

where d&*°K = dR, dK, dl(;, so that we finally obtain the Green’s function in the Fourier
integral form

G, (r) = / / / ((;:;K My, (C e Kr (A.26)
with
MY (¢) = (Dui;GiGe) ™ ' (A.27)
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This representation of the Green’s function yields explicit results for isotropic and transversely
isotropic materials (¢f. Mura’s book, [24]). For cubic and general anisotropy the Fourier
integral representation must be used.

Often, we are concerned with volume integrals of the Green’s function and its derivatives
with respect to r, such as Ugm,(r). It is then advantageous to use the Fourier integral
representation even for isotropic and transversely isotropic materials. The advantage is gained
by reversing the order of the wave vector and volume integrations, whereby many of the
integrations can be carried out explicitly.

Sir William Thomson (Lord Kelvin) obtained an explicit form for the Green'’s function of
an isotropic elastic material in 1848. As an example we may deduce the Kelvin result for the
Green’s function of an isotropic material from the Fourier integral relation. For an isotropic
material

Dijut = My + 1 (B8 + 6ub) (A.28)
and so A[zk(C) = Dijklclc_i has the form
Mi(€) = (MG + m8uCuCy + 16ie) = (A + )G + p6ix) (A.29)
since KA KN Kon 2
Ga=CG+G+E= (?1) + (?2) + (7(%) =1 (A.30)

The inverse tensor M;;'(¢) is given by the relation

- _ - N % A+ u
M (€)= (A WG+ pbu) =~ = 2o Cile (A.31)

which is easily verified by showing that

Mi;IMq-k = bix (A.32)
From the preceding relations
_ by A+ p
MM, = [ 22— ) .
[1] Mk ( " O+ 2 )ngj) (()‘ + ﬂ)CJCk + UéJk)
Atp (/\+u)2 (Aﬂt)
= iCk + bix — iCk — i A33

as required.
The Green’s function is therefore obtained in the form

=[] e = ] B e a

From a table of Fourier transforms (cf. [36]) we find that

_é /_ /Oo / -I%Ze—iK-f 4*K (A-é5)
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which may be differentiated with respect to z; and z; to give

827' 1 7 KKJ iK.r
- 1 —-iK. d3K
Oz;0z; m* /_[O/ K+ ©

By contracting the ¢ and j indices we obtain

Bcvjax, 7r2//./K2 e T K

The Green’s function may therefore be written as

(r) 51] 2 62 A + v 2 627'
Cij (2 ) " quaxq p(\ + 2u) 0z;0z;
or . \
At p ( ac,-a:j)
() = —— bij —
Gis(r) 8mur {25 A+ 24 2 }
where the relations
or _2 and O%r  _ by _ T
drdx, T dx;0x; T r3

obtained by differentiating r = |/TqTq, have been used.
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Appendix B
Relationship Between Fourier Series
and Green’s Function Approaches

In the comp(')sitiermaterial the total strain increment AsZ}(r)ls periodic in r and is defined
by the relationship

Ael (r) = Aed + Aey(r) (B.1)
where Ac?, is the strain increment applied to the composite’s boundary which is equal to
the volume average of Aef,(r) over the unit periodic cell, and Aey(r) is the deviation or

perturbation from the average value due to the presence of the fibers.
From equations 84 and 85 the perturbed strain increment is given in the Fourier series

and Green’s function approaches by the equivalent relations,
Agj(r Z ZZ Iriij (€) // D7, Aer, (r')e #r=r) gy (¢') (B.2)

or

Aen(r) = // Usiij (r — ') D Aet, () dV(r) (B.3)

We now show that these equations are equivalent and that the Green’s function relation is
the Poisson sum transformation of the Fourier series relation. -
From the definition of giimn(€) in equation 54 we may write

grii (€) = 3 (M ()66 + M (€)¢¢k) (B.4)
or .
i (61, G2 o) = 3 (MiEI(ClaCz,Cs)CJCI + Mu_l(Cl,Cz,Cs)CjCk) (B.5)
where
2mn
G = & _ Li (no sum on %) fori=1,2,3. (B.6)

5_\/ 27my\ 2 2715\ 2 2mns\ 2
() + (5 (%)
L1 L2 L3
We may therefore write

aii; (€) = gkm(Cl (n1,m2,n3) , G2 (N1, n2,M3) , (3 (N1, ng, "3)) = fuij (1, M2, n3) (B.7)

The perturbation strain increment can then be written in the form

+oo +oo :l:oo

1
Afkl(r) = LiL,Ls Z Z Z fkll] ny, Nz, N3 ///D:?”A&'

=0 n2=0 n3=0

2mng

'?ﬂ.’r-—l" ——(ry—x! —3:’5_ 7
T ) R () T o ) de) e d (B.5)
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or as +oc oo :}:oo
Acey(r) S5 Z by (n1,m2,M3) (B.9)
L L2L3 n1=0 n2=0 n3=0
where

hit (R1,n2,mg) = fraig (N1, n2, n3) ///DZ‘”AE

2 2
o B ) R e

(”‘“3)) dr, doyde,  (B.10)

By the Poisson sum formula (c¢f. Morse and Feshbach'’s “Theoretical Physics”, [37])

o0 oo iOOI +o0 Zoo oo L L2L3
Z Z Z hi (n1,ng,m3) = Z Z Z // d3K61(m1K1L1+m2K2L2+m3K3L3)X
n1=0 ng=0 n3=0 m1=0mo=0m3=0
« By (KILI,KZLQ, K3L3) (B.11)
27 2T 2T

where the sum over the integers ny,nz,n3 is replaced by the sum over the integers m;,mz,ms
in the Fourier integrals. The sum over m; includes the case where m; = mqy = mg = 0.
We now have the alternative sum,

1 +o0 +oo oo

Aeg(r) " R (n1,m2,n3)
LyLyLs n1=0 nzg—:o g;o
_ izoo izo:o iio /’//dK i(m1KyL1+maK2La+m3KsLa) fis (KlLl K,L, K3L3) g
m1=0mo=0m3z=0"_" 2”)3 2T 27 2m
// D:_r;rsAErs (I‘ z(Kx(:n x1)+K2(:tz :1:2)+K3(za 23)) diEl dw2 d:L‘3 (B12)
or
T i I d*K K,L, K,L, KsL3\ ;
Aep(r) = /// Siij ( ; ; )e’(K”“LK’x”K”?') X
ml—Omlz:Omgo (2 )3 ’ 27 27 2

///DI?TSAE )e—i(Kl(:v'l—'m1L1)+K2(za—m2L2)+K3(zg—m3L3)) er"l dl‘g d.’IIg

(B.13)
Due to the geometric periodicity of the unit cell we may write
Aer, (') = Ael, (), 7y, 75) = Dy, (2 —miLy, 75 — mqLs, x4y — m3Ls) (B.14)
and
dz, dz)y dzly = d (z} — miLy) d (2 — maLy) d(z5 — maLs) (B.15)
so that by making the change of variable
(2}, — myLy, @ — maLa, oy — maLs) = (27,5, 73) = r’ (B.16)
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we obtain

3
Agy(r //'/' d°K s (K1L1’ Ksz, K3L3) o K121+ Kaz2+Kaza) o
27 27 27

x if f icf / / /D{’J‘”Ae e KT gV ) (B.17)

mi=0mz=0m3=0"y, (my,mz,ma)

where the volume integration extends over the volume V, (m;, mg, m3) of the unit cell whose
center is at the point (myLqi,maL2,m3L3). Since my,m2,m3 range over all integer values,
the summation of the volume integrals extends to all the cells in the periodic lattice, i.e.,
it extends over the entire volume, V', of the composite medium. The expression for Aey(r)
thus takes the form

&K KL KLy KsLs\ ks
Aekl /.//(27T)3 fkll]( 71" 3 27‘_ ’ 271_ ) X

/ / / DI Ael, (1) e ®r qv (1) (B.18)

By interchanging the order of the volume and wave vector integrals and noting that r”
can be replaced by r’ since it is a dummy integration variable, we obtain

d’K KL, KL, Kj3L3 K.(r—r') nym /
Ac “ // dV /// 271’)3 fklij( 2 3 27 ) o ) Dz]rsAgrs (I‘) (B 19)

(RILI K2L2 KBLS

S oy o ) in place of (n;,n2,mn3) in the expression for

Introducing

flvlij (’m,nz,ns) = gkuj(Cl (Tbl,nz,na) , G2 (’nl, nz»ns) e (nl,n% n3)) (B~20)

then gives

( ¢ (K1L1 K,L, K3L3) (K1L1 K,L, K3L3) ¢ (KILI KyLg K3L3))
1 y§2 3

Gkt or 27 2r ' 2« 2 2r ' 2«
1 (M(C) M_I(C)
with K VK
: : (B.22)

“= K - vV KK,

and the perturbed strain increment takes the form

A'fk-'(”):./i// dvir /// (;2)(; (M‘k (C)KJK:+%§#R’J-Kk) K Dp Ak, (v)
(B.23)
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But, from Appendix A,

G (r — ‘//./(iirl; M’;{z e K.(r-1) _ /// (;3:){3 M;{g (€) K (r-r')

since G (r — r') = Gy (r' — r), and therefore
0%Gy (r — 1) d3K M K (r—r'
O"Gyjp \r —r) K iK.(r-r’)
6$33.’E1 ././/

Inserting the last relation into the expression for Aey(r) then shows that

PGy (r—r) 8Gyu(r—r)\ m
Acu(r ///dV 2 ( Oz;0z, + O0z;0xy, Disriezs (')

From the definition of the tensor Uyim, (r — r’) in equation 83, we see that

AEkl(r // Ukh] (I‘ D:;LTSAET‘S (I‘ ) dV( )

which is the result obtained with the Green’s function approach.

(B.24)

(B.25)

(B.26)

(B.27)

The Fourier series expression for the perturbation strain increment is thus identical to the

Green’s function expression and the two are linked via the Poisson sum formula.
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Appendix C

Poisson Sum Formula -

Irnr Fig. 7 the function flz) = [ (:c - —L) / 5 ] is shown on ﬁhe unit cell extending from £ = 0
to x = L. The corresponding function defined on the n'® unit cell to the right is given by
f(z + nL) and the periodic function ¢(z), which is comprised of the functions f(z + nlL)

defined on all of the unit cells extending from z = —o0o to x = +00, is given by
d@)= 3 fa+nl) (c.1)

Each function, f(z+nL), is defined only over the corresponding n'* periodic cell and is taken
to be zero outside of the cell. Each function can therefore be represented as a Fourier integral
and the periodic function ¢(z) can be written as a sum of Fourier integrals,

Z f(z+nlL) Z Fourier integral of f(x + nL) (C.2)

n=-—oo n=—00

By setting z = 0 in both summations we obtain the Poisson sum formula. This method is
outlined at the end of this Appendix.

The Poisson sum formula can also be derived by expanding the periodic function g(z) into
a Fourier expansion and showing that the Fourier integral sum, when z = 0, is the sum of
the coeflicients in the Fourier series expansion.

Since g(z) is a periodic function of period L, it may be expanded into a Fourier series in
the form

i 27rm:r:

q(z) = Z ame” (C.3)
m=—0o0
where
L i2rmaz’ .
an=1 [ “TFq@) (C4)
The object is to show that the Fourier series
z27rm.r L i2rmz’ , ,
Z e /Oe L q(z') dz (C.5)

m=-0oQ
represents a sum of Fourier integrals. This is easily accomplished by introducing the expres-
sion
Z f (@' +nlL)
n=—od

into the Fourier expansion and changlng the integration variable by means of the relation
y=az' +nL (C.6)

In this way we obtain
_igrme &7 immlynd)

= S farnn=7 3 Y [ e e

"= =T y=(n-1)L

hlv—*
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The exponential function exp(i2rmy/L) is a periodic function with period L, so that

i2am{y—nl) i2rmy
e L =¢ L (C.8)
If we set £ = 0 and note that the sum over the integration limits is equivalent to summing
over the entire axis of z from z = —o00 to £ = 400, we obtain
o0 i2rmy
> feL)= ¥ 7 / e L f(y (C.9)
n=-—oc m——oo

Putting L = 1 gives
S iw= 3 [T ey (C.10)

and by changing the integration variable to K = 27y/L, we obtain
°° o [ o o (KL
= = im K 11
ECEIE-S i COL ©1n

n=-o0 m=—0Q

In three dimensions this result takes the form

too oo Zoo too oo Foo LL2L3 oo 3 ) KoL KoL KoL
SY Y fmmng = 35 3 G [[ [ i
n1=0n2=0n3=0 m1=0m2=0m3=0 o0

xf(KlLl K,L, K3L3)

C.12
or ' 2w’ 27 ( )

which is the form used in Appendix B. The cubic function defined here for illustration purposes
has the property that the constant ay in the Fourier expansion is zero, since fo f(z)dz = 0.
This term may therefore be omitted from the summation on the left and the summation signs
primed to denote the omission of the term with n; = n; = n3 = 0.

It is now possible to show that the Poisson sum formula follows from the Fourier integral
sum in equation C.2.

We have the Fourier integral sum representation

i f(m) Zf F@)s(y —m)dy (C.13)

m=—00 m=—00

where the Dirac delta function is given by the Fourier integral
1 oo
§(y —m) = f -mz gy (C.14)

Then the Fourier integral of f(m) is

1

f(m) = oy /oo e ™ dz /_O; e f(y)dy (C.15)
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Putting z = 27a gives

f(m) = [ emmada [~ e fy)dy (C.16)
The Fourier series expansion which culminates in equation C.10 shows that
fl@)= [ e f(y)dy (C.17)
so that equation C.16 becomes
f(m) = / e~ (o) d (C.18)
We may therefore write
o —00 00 00 0o .
> fm)=3 fm)= > f-m)= 3 [ ™ f(a)da (C.19)

This is the Poisson sum formula in equation C.10, from which equations C.11 and C.12 follow.
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Appendix D

Integral Equation for Displacement Increment
In Neighborhood of Free Surface

The static equilibrium equation for a medium with elasticity tensor D7}, is obtained from
equation 37 as '

a(Ael
D7y, ( 85;;(1‘)) a‘ij {ng,As;;,(r)} (D.1)

in which Aef,(r) = Aed(r) + Aew(r).
In this equilibrium relation we will not assume that the strain increment Agd,(r) applied
at the surface of the composite is constant and will take it as a spatial variable. If we set

M) = o= {DBude) (D.2)
and note that
A AuT A Aul
Asfl(r) — _;_ ( ( a;l(r)) + ( a;:k(r))) (D3)

the equilibrium equation may be written in the form

- H? (AulT)

m ~ N~ 2 - Af 4
B e me ~ A (D-4)

where the symmetry of D, with respect to the indices k and ! has been used. On denoting
the operator F;; by the relationship

52
Fu= Dg-lkzm (D.5)
the equilibrium equation is
Falbul = Af; (D-6)
Now consider the integral
1. %) = [[[6: () Fiyy () V(') (D7)
14

for any two field variables ¢;(r) and ¥;(r). These field variables may be tensors of any rank.
For example, if ¢ and v were second rank tensors, then I(¢,v) would be a second rank
tensor integral

Lo($, %) = [[[ 0 () Fisthio () V(') (D-8)
| %4
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From the definition of the operator F;; we have

1991 = [[[ o) 05 (%) v (09

and since

’ ( () pr O (r))za@ ) pr 3 () 4 4 (e '>Dwax (6% (r’)) (0

ot tpqj ! / ipq] 13
or , 15) ., Ba:p amq 8xq

the integral becomes
16.0) = [ff 2 (60 D 28 aviey - ///6"” Fop, 2 ave)
Vv p ,

The first integral can be transformed into a surface integral via Gauss’ divergence theorem,
so that

7, 0¢: (v') pm 05 (' ,
16:9) = [[ ns 60, D™ o - Il 5 Son, e ave) (D12
By interchanging the arguments ¢ and 4 it is evident that
17 oy (r' 0
106,01 = [[ (605, G dsw) = [[[ 25 PR 95 avew) o)

Now the elasticity tensor D}> . is symmetric with respect to its indices, so that the interchanges
ip—pi, qj—jg  ipe(giorjg),  gj < (iporpi) (D.14)

leave the elasticity tensor unaltered. This shows that the volume integrals in I(¢, %) and
I(3p, ) are identical, so that Green’s identity ([38], page 434) can be written as

T4) = 106.8) = [[ () (600D, 2500 - .0 2, 258 asie) (0115

or
/ [ (0 F s = i) av = / [ (az e 3‘”3 $:Dip 2‘%) ds (D.16)
Now choose the field variables ¢ and 1 as a vector and second rank tensor in the forms
é: (r') = Aul (v)) — A (r') = Aw, (r) (D.17)

and
¥y (r') = Gy (r = 1) (D.18)

where ¢; (r') is the perturbation displacement increment Aw; (r') and G; (r — r') is the Green’s
tensor function satisfying the differential equation (¢f. Appendix A),

FiGir(r =)+ 6xb(r —1') =0 (D.19)
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The integral relation then becomes
// Au — A (¢ )) FiiGiu(r—1') —

— G (r — 1) Fy (AuJT (r') — A (r')) } dV(r)
= //np (r") { (Au;‘r (r') — Au} (r )) D:;qga—Gia(;:——r,) -

Gy (r—r') DT (a(A;i,(r’)) _ o (rl)))} ds(r') (D.20)

ipgj 7
ox "

Replacing F;Gjx (r — r') by —6;46 (r — r') in the first term of the volume integral gives

Aul(r) — Aud(r) + ///G,k (r— ( (r') — Au) (r')) dv (r')
_ //n,, {sz Ty ( ( 8;( r')) B B(Agi’(r’))) _

q q

— (AuzT (r') — Al (r )) Dy (%J_Jk(_r—_r’)} dS(r') (D.21)

ipqj a.’l:;
From the definition of the operator F;; we obtain the relation
FisAul (r) = Afi(r) = {D:;‘k,Aekm r)} (D.22)

and by inserting this result into the integral equation and noting that

a(Auf (r) 1 (o(Aud(r))  O(Auf(r)
D;;qj(—aig—)ng;}qji (6;, )+ (a;;. ) = D Aey (r') (D.23)

q

we find that the total displacement increment is

AL(r) = AWl(r)— /f G (r — { m o (Bel, () = A, (1)} v (r) +

+ é [ (r’){Gik (r — ') DLy (86T (') — Al (1)) —

— (au] (v) - A () &J@%,_—r')} ds(r') (D.24)

In the volume integral an integration by parts with Gauss’ divergence theorem using the
relationship

8Gz~k (I‘ - I") _ _8Gik (!‘ - I")
oz - Ox;

(D.25)
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gives

) 2 (D (86t () - Ak, ()} V()

[ffoute -
/

= I/ 8% {a,-k (x — ') DI, (87, () - Ae, () } aV(r') -
[P P (8 ) - 8 0) v

- // n] Gix (r ,) Ders (Ae:s (r’) - AEB" (r,)) dS(rI) t

* /// aalka(;, P)D:;rs (Ae,s (r') — ALY, (r')) dV(r') (D.26)

This result may now be substituted into the integral equation to produce

- [l 20 20D Dy, (8 () - B, () V(s +

Aul (r)
+ / [y ) { s =) D5, (AT - 4, ) +
S

ijrs amr

+(Au,.T (r') — Aud (r )) DT M} dS(r') (D.27)

In the first two terms of the surface integral we observe from equation 35 that

n, (') DI, (Ael, (t') — Aer, (r')) = n;Acy; (') = At () (D.28)

ijrs

represents the incremental surface traction on the surface of the composite. Equation D.27
represents the well known Somigliana identity ([38], page 93) for the displacement increment.
In the case where the composite is assumed to be of infinite extent the surface integrals in
the preceding integral equation vanish, and if Ae), (r') is assumed to be spatially constant,
the total displacement increment is given by the relationship,

ifte) - 2k - f] O E =y et () Vi) (D.29)

which corresponds to equation 79 and is the form used in the main report. However, equa-
tion D.27 must be used when the surface is not infinitely removed and if Ael, (r') is not

assumed to be constant.
In a finite element context it will normally be assumed that the fibers are very small in

comparison with the dimensions of the finite element. At the Gaussian integration point in
the finite element it is then permissible to neglect the contribution from the surface integrals
since the surface of the finite element is assumed to be many periodic cells away at “infinity”.

In some situations, however, this may not be a valid assumption. Some turbine blades and

58

MRS W m om0 s W min s sl

‘H J\ i




muw Moy
vt ik

4t

i

1

LR

i i

=
e

{

vy

r

‘l 1 VHH

P

r

turbine engine combustor liners are fabricated from thin sections in which the central passages
are hollow to allow cooling air to pass through the component. In the thin cross sections of
such components the surface integrals must be retained in the constitutive formulation.

Suppose, for example, that the total displacement increment at the node points of a finite
element are given. From these nodal values and a knowledge of the element’s displacement
interpolation functions it is then possible to compute the total displacement increment Aud(r)
on the surface of the element and the total strain increment Ael,(r) at any point. Since
AuT (r') = Au? (r') on the surface of the finite element, the last term in the integral equation
vanishes and the total displacement increment is determined from

BCC]'

() = s - [[f 2D (a, () - A () aV(E) +
14
+ / / n; (t') G (r — ') Dy, (AT, () - A}, (1)) dS(T) (D.30)
S R

in which the terms in the surface integral represent the contribution to the total displacement
increment due to the incremental traction,

At (') = n; (v') DI, (AR, (') — Ael, () (D.31)

ijrs

on the surface of the element. This surface traction is needed to maintain the displacement
increment equality Au? (r') = Auf (r'), which is imposed at the element’s surface.

By differentiating Auf (r) with respect to z; and z; and taking half the sum, the total
strain increment is subject to the integral equation

ASH(r) = Aey(r) + [[[Unis (¢ =) D, (862, () = A, () AV () +

N // ()] (aaik (r—1)  9Ga (r—r’)) DI, (AT, () — Ae, () dS(r)

5 (9:!31 Ba:k
(D.32)

in which .
D Act, (v') = DB (') — 6Dijua (') [Aek, (') — Aci (r')] (D.33)

and this integral equation should be used for thin sections of composite material where sur-
face effects are important. This implicit integral equation is similar to that for the infinite
medium but contains a correction term for the surface effects in the last integral. This surface
integral will become less important—due to the derivatives of the Green’s function—when
the integration points r’ are far removed from the field point r and it vanishes for an infinite
medium.

In the preceding development it was assumed that the displacement increment AY? (r') was
known, by interpolation with the element displacement polynomials, from the nodal values.
This forces the incremental surface traction At; (r') to adopt a periodic distribution in order
to maintain Au7 (r') = Au? (r') on the surface of the element. We could, alternatively, assume
that the surface traction increment is zero on the free surface of the element, in which case
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the total displacement increment Aul (r) will exhibit a periodic variation on the the surface
and the surface takes on the appearance of a frilled structure.

If we therefore assume that the finite element is thin (see Fig. 8); that the surfaces are
free of surface traction; and that the surfaces at the ends of the finite element are sufficiently
far removed from the Gaussian integration point, the first term in the surface integral in the
integral equation is zero and in lieu of equation D.30 the relationship for the total displacement

increment now takes the form,

2l = ulee) - fff 2y, (8, () - 26, () aV) +
+ // n; () (Bf (') = Aud () D:;,ﬁ%%‘-—‘ﬁ dS()  (D.34)
S

The solution to this integral equation gives a periodic total displacement increment, Au? (r),
which, on the surface of the composite, will exhibit frilling.

It is clear that during the finite element analysis frilling will not occur in the element. The
interpolation functions normally used in isoparametric elements are linear and quadratic, and
cannot adopt the required periodic behavior. However, the stiffness of the finite element—as
computed at the Gaussian integration points with the composite constitutive model—will
reflect that the fact that the constitutive properties are computed as though the element were
free to take on a frilled appearance. When the “damage critical” strain-temperature history is
used to determine the stress-strain history variation throughout the unit periodic cell outside
of the finite element program, the preceding integral equation will allow the frilled appearance

of the composite to be calculated.
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Appendix E
Evaluation of the Eshelby Tensor

The Eshelby tensor S;,m is defined by the relation

Sipim = — 1{6%6%///0,,3 1) V() + 52 635 ///G,, r)dV(r)} am (E.1)

Or as

Sipim = / / / Usprs (v = 1) V(') D (E.2)
\%4

where the field point r lies within the volume, V, and where the volume extends over an

infinite cylinder of radius a in a medium with elasticity tensor D;ji. Although the Green’s

function for transversely isotropic materials is known [24], it is more convenient to work with
the Fourier integral representation of the Green’s function as given in Appendix A.
Introduction of the Fourier integral representation,

o= 50w e

where ¢; = K;/K = K,/,\/K,K,, into one of the volume integrals in the definition of Sipim
gives, on reversing the order of the volume and wave vector integrations,

Ligi; = %‘g /J Gy (r— 1) dV(r) (E.4)
or
N

The Laue interference integral [39] extends over the cylindrical volume and can be written as

I= /f/ Kr' gy (p /// (K2 +Kazh+Kazh) gt ot d, (E6)

Let z} = pcosf, =, = psinf. Then in cylindrical coordinates
I— /oo /a/2w eisté ei(Klgcos0+Kzgsin9) diEdeQde (E7)
oo JO JO

Since o
/; K37 dxfy = 276 (K3) (E.8)

where § (K3) is the Dirac delta function, the integral takes the form

a r2rm .
I=2m6(Ky) [ [ etFiecnttiaesn® o dodf (E.9)
0 J0
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q dq :
Let = —2— dp= ———2_. Then, if K = \/K? + K3,
VE? + K} VK + K2 o

- K uK om 1( gK) cosé qKzsmg)
[= 20 (Ks) / / VKRS KR ) g dq df (E.10)

/K2+K2
K, K, .
If we now set ————= = c0s €/, —===——=— =ssin#’, then
VK + K? VK + K%

K aK
2m6 (K3) / / iacos(6- G)qdng (E.11)

YL

Since the integration extends over a whole circumference, it is immaterial where the origin
of 8 is placed. The integral may therefore be written as

aK 2T
[ = 20Ky / qdg [ €90 dp
VK + K370 0

= IR ™ dgamay (a) (E.12)

-~ JKI+ K3
I (a,/Kf n K§)

or as

I =47%6(K3) a (E.13)
VK + K2
where Jy and J; denote the usual Bessel functions of order zero and one.
The integral Lgg,; can therefore be written as
I d3K Mz] ) 826_1;1('!' 425 (K i (a' K12 + K22) E.14
kot — ///(27r K?  Ox0z, ™6 (Ks) a /K? + K2 (E.14)
Now oK
e _ —iK.r
endn, KiK e (E.15)
so that
1 ;71 dK,dK,dK; _
Lrgis = _%/_//K% +Kg+ kg e My (0>
| , J, (a,/Kl2 + Kg)
x ¢ Hazs gmilKimtKara) g (g0) g (E.16)

VK + K3
If k = 3 or g = 3, the Dirac delta function é (K3) gives zero values for the integral. Hence,
the non-zero values of Lyg; are given by k =1,2 and g = 1, 2.
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Invoking the sifting properties of the Dirac delta function, viz.,

[ 1 (K Ky Ka) 6 () dEs = £ (K1, K2, 0) (E17)

then gives

J1 (a\/Klz + K%)

1 [7 K.K, .
Lygii = ——//dK dK, M1 (¢, G, ¢ = _Dkflg ) izt Kaw) _
kg J 27r IS 1 2 1] (Cl <2 C3 0) (K12 + K% € ) a 12 + %

(E.18)
where the unit vector ¢ is now defined by the relations
K1 K2
= ——e, =7 G=0 (E.19)
JK? + K2 JK? + K2
If we put
K1 Kl K2 K2 .
(L = — = ————= = cos¥, (o = =F = ————== =sind (E.20)
K /K + K3 K \/K}+K3
and set x; = rcos ¢, To = rsin¢, then in cylindrical coordinates,
1 Sl —iKr cos(6— aJl(a’K)
Ligij = —57;/0 /; K dK df My; (C1, G2) g e @-9) K (E.21)
The integration with respect to 6 extends over a complete circumference, so that
1 2 B o0 _iKr
Ligs = 5= [ Mi" (61:6a) Gy 06 /0 ae= K50 I (oK) dK (B.22)

Since Sipim, is real, the real part of the preceding integral involving the integration over K is
N =/ acos(Krcos8)Ji(aK)dK (E.23)
0

Setting z = rcosé, and noting that cos(Kz) = cos(—Kz), we need be concerned only with
positive values of z. Now if the field point r lies within the cylindrical volume, then0 < z < a.
But, from Gradshteyn and Ryzhik [40],

|
N = /oo acos(Kz)J1(aK)dK = 2o {sm (z/a)} for0<z<a (E.24)
0 vaz — 22 -7

If ¢ = sin"!(z/a), then

_acosy cos _cosyY
N=Ta—=a" {m] = ost (E25)
a
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Thus,
Lygij = _"/ ;J_ (¢1, Cz CkCg dé (E.26)
independent of position r in the cylinder as expected from Eshelby’s result. In this integral we

have ¢, = cosf, {; =sinf, {3 =0, M;' ((1,() = (Cmﬁmijn(n)_l and k and g are restricted
to the values 1 and 2. The Eshelby tensor may now be written as

Spim= 3= Dram { [ M (o) G0+ [ Mz (61G2) e i} (B.27)

When (3 = 0 the Christoffel stiffness tensor for a transversely isotropic materlal M;;, and its
inverse, M, ! (which applies to the homogenized medium of a composite with fibers arranged
in hexagonal arrays) have the component forms

My = Dunéi+ 3 (D—uu - 31122) G (E.28)
My; = My =3 (ﬁnu + 31122) €162 (E.29)
Mz = M =0 ' (E.30)
My, = % (Ellll - E1122) ¢+ Dund? (E.31)
My = My =0 _ (E.32)
Ms; = Dy (E.33)
and
-1 % (51111 - —D—1122) ¢+ Duné?
M7l = — _ — (E.34)
3Dun (D1111 - Duzz)
D D
M7 = M =- un + PUng (E.35)

Dun (D_nu - E1122)
M3' = Mi'=0 (E.36)
Dyt +4 (51111 — E1122) ¢2

My' = — e — (E.37)
“ %Duu (Duu - D1122)
My' = Mz =0 (E.38)
1
Ma' = = E.39
33 Diass ( )
The Eshelby tensor can now be determined by integration in the form,
5D1111 + Diae :
S = — E.40
H 8D (E-40)
S22 = Sun (E.41)
3D1122 — Dun
S = 2 E.42
1 8D ( )
D33
S. = —= E.43
= g (E.43)
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Siss = Sws (E.44)

Sooan1 = Suez (E.45)
3Dy — D

Si212 = Si221 = 1181151111 2z (E-46)

Spsss = Sazsz = Sizs1 = S1z13 = S1313 = 3 (E.47)

The Eshelby tensor for tetragonal materials—which applies to the homogenized medium
of a composite with a square array of fibers—is currently being worked out.
The results for an infinite isotropic cylinder may be recovered by taking

ﬁllll = 2/,1,(1 — l/)/(l — 21/), -D_UQQ = 2}111//(1 — 21/), and 51133 = 2#1//(1 - 21/) (E48)

where g is the Lamé shear modulus and v is Poisson’s ratio. For an infinite isotropic cylinder
the Eshelby tensor reduces to

5—4v
= —_— E.4

Sun 8(1—7) (E.49)
Sp22 = Sun (E.50)

v -1
Snze = 81— (E.51)

v
Soo33 = —-—‘2(1 —y (E.52)
Sizz = Sae33 (E.53)
Sy = Su2 (E.54)
S — Syooy = S-4v (E.55)
1212 = O1221 = 8(1—1) :

Saszs = Siaiz = Sizsr = Sazsz = § (E.56)

The Eshelby tensor for both isotropic and transversely isotropic materials can also be
deduced from equations 17.27, 17.30 and 17.31 of Mura’s book, [24], by setting ¢ = 0 in his
notation.
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Appendix F

Proof that U;ju(x —y) = Uiju(y — x)

From the definition of Ui (x — y) we have

1(PGu(x—y) , 8*Cu(x-y)
2 0z;0x, Oz;01

Uiju(x—y)=—

; OGu(x—y) = 0Gu(x—y)

= , 5o that
Oy Ay

Bu

BZGik(x - y) _ BzGik (X - y)
BEJ'B.’L'[ N 6y]6yl

The operator can therefore be written as

1 (0°Gu(x—y) | PCGu(x-y)
Uiji(x —y) = "9 ( Oy Oy, + Oy 0y

But Gy (x —y) = Gi(y — x), so that

1 {0*Galy —x) | BGuly —x)
Uijkl(x -y)= D) ( Oy,;0u + Oy 0y,

or
Uij(x —y) = Ujn(y — x)

as required.
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Appendix G
Differentiation of Singular Integrals

In the text and Appendices we have taken derivatives of the volume integrals and written,
for example,

= 8 aGik (I‘ _ I") m * ’ !
fa = 8:cq/‘[/ oz, D, Aer, (r') dv(r’)

PGy (r —1')
= Tk Ipm Ack () dV(Y G.1
[ e e Pt (1) 4V () (@)
1%
If the integration volume V contains the field point r the integrand 8Gy (r —r') /0z; is
singular at the point r’ = r, and the above operation in which the derivative is taken inside
the integral must be treated with caution, as pointed out by Bui, [41] and Born and Wolf,
[42]. We should, in fact, isolate a small spherical volume, D, about the singular point r’ =r
and evaluate the integral according to Bui’s procedure, viz,
&Gy (r — 1)

L, = /V _[D/ e e Dilier, () av () +

6 ank (r - rl) m * ’ '
+ axq ./;./‘_/ 61;] DijTSAErs (r ) dV(r )

= azGik (I‘ B I") m * ’ ’
= /‘/fD/ Oz,0z; D7, Ay, (»r ) dV(r)) —

. /Z/ai; (aGik e "')) 4V (') D, Act,(r) (@2)

where we have used the fact that, if the spherical volume D about the point r is small enough,
the strain increment can be considered constant and taken to have the value at the center of
the sphere, Ae,(r). The integral may therefore be written as

azG,-k (r

= (/] P py e, ) V() -

— ([ o) 28421 a5y D At (0 (G.3)
S J

The first volume integral is evaluated in the principal value sense as D — 0.

Rather than using the preceding operations outlined by Bui, we may treat G; (r — r')
as a Fourier integral. The preceding operations are not then necessary and the derivative
can be taken inside the integral. That is, equation G.1 is valid when the Fourier integral
representation of the Green’s function is used.
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To demonstrate the validity of equation G.1, consider the singular integral used by Bui.
He considers the derivative of the integral

1 dt 1-z
F(z)zf_lt—x = log 1+z’ (G-4)

where —1 < & < 1. Since the integral is known, its derivative is simply found as

dF 1 1

a_z—l_wﬁ-l’, (G-5)

Notice that the integrand is singular at the point ¢ = x. Bui demonstrates that in order to
take the derivative of the integral we must write it in its principal value sense,

F(a:):lim( /tdt + at ) (G

e—0 - t—zx
t=-1 t=x+e€

and the derivative dF/dz must be evaluated by noting that both limits and the integrand are
functions of x. Using Leibnitz’s rule for differentiating an integral whose limits depend on z

gives
dF .. [d(z—¢) 1 /z—fd< 1 )
dr ll—r»%( dx :v—e—:::+ -1 dz \t—=x dt) +
. dzt+e 1 tody 1
+£]—I»%<— dz x+e—w+/z+s%(t—x)dt)
) 1 1 - dt 1 dt
- Egr&(:—;-l—/_l (t—$)2+-/z+e(t—$)2)

=y (-2 L) @)

dFr 1 1
dr z-1 z+1
To avoid the convected terms which arise from differentiating an integral whose limits
depend on z, consider representing the integrand as a Fourier integral. We have, from Grad-
shteyn and Rhyzik [43], the Fourier integral representation,

or

(G.8)

1 1 o [T .
_ A K —iK(t—x) K G.
=2 = 7 L (im0 (@)

The singular integral F(x) can then be written as

R & 1 o . ~iK(t—z)
F(z) = ./—1dt\/ﬂ/;oo 2zsgn(K)e dK
R Y e iKz Lokt
= m/_m 5 isgn(K)e dK/_le dt (G.10)
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If we now differentiate with respect to x in the normal manner we obtain

dF 1 /00 T . [ o—ikt }1
—_— = — dK,/——zsgnK et TiK -
dx \/271' - ( ) (_ZK) t=—1
_ /m oKz (K _ o—iK
= \/ﬂ/ dK zsgn ( e )
= —27r/ dK‘/ isgn(K) (eXEt) - _iK(l‘I)) (G.11)

A comparison of this integral with equation G.9 shows that this Fourier integral has the
inverse relation,

E_ 1 1
dr z-1 z+1

(G.12)

which is the correct result.

Thus, by expanding the integrand of a singular integral as a Fourier integral, reversing the
integrals, taking the normal derivative, and inverting the resulting Fourier integral, we obtain
the correct derivative of the singular integral. It is then clear that if the Green’s function is
represented in Fourier integral form the procedure of Bui is not required. In fact, the Eshelby
tensor in Appendix E is obtained by taking the derivative of the Fourier integral, and the
correct result is obtained.
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Appendix H
Origin of Self-Consistency

Many researchers in the mechanics literature suggest that the self-consistent method has its
origins in the present century. It would appear that the method is, however, very old and
has its origins in the last century. In the Lorentz-Lorenz theory ([42], page 87 and [45]) of
1880 the electric dipole moment p in a dielectric is related to the electric field E' by the
constitutive relation p = aE’, where « is the polarizability. The polarizability « is related to
the refractive index n and the number of molecules per unit volume, N. If E is the mean or
volume averaged field applied to the dielectric the actual field at any point is given by
E-E+ 413% (H.1)
where 47 Np/3 denotes the perturbation or deviation from the average electric field. As shown
on page 85 of reference [42] this value is estimated by smearing the effects of the molecules
outside a spherical volume enclosing the point at which the field is observed. An analogous
formula for statical fields had been derived even earlier by Clausius in 1879 and Mossotti in
1850.
Twersky [44] observes:

In the biography of John William Strutt (third Baron Rayleigh) by his son Robert
John (the fourth baron), the son quotes the father on the verse that faces the ini-
tial contents page of the first four of Lord Rayleigh’s six volumes of Scientific
Papers: “When 1 was bringing out my Scientific Papers I proposed a motto from
the Psalms, ‘The works of the Lord are Great, sought out of all them that have
pleasure therein’. The Secretary to the Press suggested with many apologies that
the reader might suppose that I was the Lord.” The Secretary need not have been
so apologetic. The second verse of Psalm 111 should have been augmented with
the next three lines: “His work is honourable and glorious, and his righteousness
endureth forever. He hath made his wonderful works to be remembered.” Depart-
ing from King James’ translation, we may read in the Hebrew of the last verse
of this psalm the most important of all the Rayleigh principles of mathematical
physics—that the wise beginning of work in this field is to assume that the prob-
lem had been considered by Rayleigh and to study his works: “The beginning of
wisdom is reverence for the Lord; very good sense have all who do so.”

Rayleigh [45] tackled the problem in his paper “On The Influence of Obstacles Arranged
in Rectangular Order Upon the Properties of a Medium” and was probably the first person to
define when the self-consistent method, viz. the Lorentz-Lorenz formula, could be expected
to break down. At the end of his paper he states:

The general conclusion as regards the optical application is that, even if we may
neglect dispersion, we must not expect such formule as (the Lorentz-Lorenz equa-
tion) to be more than approximately correct in the case of dense fluid and solid
bodies.
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FIGURE 1. - TURBINE BLADE HfTH PERIODIC MICROSTRUCTURE.

.~

FIGURE 2. - UNIT PERIODIC CELL FOR LAMINATED COMPOSITE.
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Abstract

This work is concerned with modeling the nonlinear mechanical deformation of
composites comprised of a periodic microstructure under small displacement condi-
tions at elevated temperatures. The practical motivation for such work stems from the
need to design and optimize new multiphase materials and to predict their micro-
mechanical and bulk material behavior under in-service thermomechanical loading
conditions.
Two different methods, one based on a Fourier series approach and the otherona
_ Green's function approach, are used in modeling the micromechanical behavior of the
composite material. These two methods are shown to be equivalent to each other via
the Poisson sum formula. Although the constitutive formulations are based on a
micromechanical approach, it should be stressed that the resulting equations are

. .. = yolmeaveraged Jo produet ovezall “sflectjve”constitufive relations which relate the-. ., 0
T pdik, voldmie averaged, stréss incieffent to ‘thé bilk, voluime #veraged, stiain-itcres - 7T TR M-

ment. As such, they are macromodels which can be used directly in nonlinear finite
clement structural analysis programs.

. . L T ¢ I T ., men e m « L, e - D

1. Introduction

The ultimate objective of this work is to produce a computer program (o
analyze the heterogeneous stress and strain history variation at the “fatigue
critical™ locations of a composite structure operating at elevated temperatures.
This paper describes some of the theoretical foundations for that program. A v 5/(
mesomechanics (Haritos et al,, 1988) approach is adopted which relates the
re (7 Fowk)
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B " Iicromechanical behavior of the heterogencous Eompasite to its in-setvice ™
T TR macroscopic behavior. =
LR I A R RIS AR s A .

& ‘Totaprehiensive application ‘of ticromechaics to- methamical defor- s Ha e g L
mation problems is given by Mura (1982) in his book Micromechanics of
Defects in Solids. The composite materials in which we are interested have
fibers which are closely packed together in periodic arrays. Pictures of metal
.. inatrix: composites (tungsten—fiber-reinforced  superalloys) which exhibit a. o . o
.. periodic microstructure can be found.in the article by Petrasek et al. (1986). o
£ S'drrle""‘oiﬁpbsites‘ai’é:actixallj"compr‘xsed'of'a'pcriodii:micrd'sthic’t‘ufe__wtiil,s; T R LR P
others are possessed of an essentially randomly distributed microstructure.
- When the fibers in a composite material occupy a large volume fraction of the

— material, the induced deformation in one fiber interacts with and alters the
induced deformation in the neighboring fibers. When the fibers are densely
i 7 packed the interaction effect becomes dominant and must be accounted for

in the constitutive formulation.
Nemat-Nasser et al. (1981, 1982, 1983) have exploited the mathematical
simplicity of a periodic microstructure in order to develop elastic, plastic, and
creep constitutive models for composite materials. The assumption of perio-
- dicity allows the heterogeneous stress, strain, and displacement fields to be
expanded in a Fourier series, which greatly simplifies the ensuing computa-
. tions. This technique fully accounts for the interaction effects between neigh-
—_ . boring fibers. Even when the composite is comprised of closely packed fibers
. distributed at random, the method gives accurate results (Memat-Nasser et
R A A S S AR ‘d'l;,-:l982)'fnt.theﬁeﬁ'ectiyé”‘clasti,city:.teasor,_:Whquensclypacj;qd,ﬁbggs{o;rm e T T SR
a large volume fraction of the composite material, these interaction effects play - I
a dominant role and must be included in the calculations. It appears that
. ... . .inclusion of the interaction effects cap be as, or more, important than inclusion
of the random nature of the microstructure when the fibers occupy a large
volume fraction of the composite material.

The nonlinear constitutive behavior of composites with a periodic micro-
structure can also be treated with a Green’s function approach as shown in
the expositions be Gubernatis and Krumhansl (1975), Korringa (1973), Zeller
and Dederichs (1973), and Barnett (1971, 1972). Here, the periodic heteroge-
neous material property variation—due to the fibers—is treated as a fictitious
body force in the matrix material The Green's function is used to evaluate the
displacement due to a unit point force in the matrix material, and the actual
displacement and any -point in the composite can then be determined by
summing (integrating) the effect due to a volume distribution of fictitious
periodic body forces. .

Dvorak (1986) and Dvorak and Bahei-El-Din (1982, 1987, 1988) have also
made great-progress in modeling the micromechanical behavior of nonlinear
periodic composite materials and are embarked on a conbined experimental
and theoretical effort. ‘

Work on the theoretical foundations behind the homogenization of micro-
mechanical constitutive models to produce bulk macroscopic models has )

Ly

e

' wp

l.,,‘ ')

IW” Yoy
T

CRIGINAL PAQE IS
OF POOR QUALITY

r



N L b

nmmo m

|l Im e e !




e e =

mwm o

. Equivalence ql',G'rcc'q's Function and the E:oudcr Scﬁcs ‘Represeht‘ation , 537

= S Lo BRI R

-
R

ces it C

T - been underway in France by Devriés and Léné (1987), Duvaut (1988), Renard .
""" Tormne s '""iif_l'd"Mé’tﬁhdniér‘"(i%ﬂ",fIiéné"‘aﬁdf' [:e’guillbnf(i-982);=Iséné'-»(19854,?1-98'6)',:a-nd¥;-'7-.»- L el
o Sanchez-Palencia (1980, 1985). : :
Aboudi (1987) has recently developed a macroscopic formulation for

periodic composites based on volume averaging Bodner’s viscoplastic con-
L e e oL F o wstitutive tmadel (Bodner, 1987) over, the unit periodic cell, but the method is ., I
= general and is not restricted to any particular constitutive model. This work =~ I
- o * “éxpands’ the heterpgeneous displcement - throughout-the constituent phases. - . .c Vool

of the composite material as linear and high-order functions of the coor-
dinates. Good agreement with experimental results was obtained by this
method.

A more general approach is adopted in the present work, where the dis-
placement is not retricted to linear or quadratic variations throughout each
constituent phase, but varies according to the “exact™ theory of an infinite
periodic composite.

The purpose of the present paper is to outline briefly the Fourier series and
Green’s function formulations for the nonlinear constitutive behavior of vis-
- coplastic composites comprised of a periodic microstructure, and to show that
the formulations are equivalent by deriving the Green’s function representa-
tion from the Fourier series representation using the Poisson sum formula.
Further details concerning the formulations canbe found in a recent report

(Walker et al., 1989).
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2. Theoretical Modeling Approaches
E A periodic composite materi.al is suppf)sedly actec'i upon by an imposed strain
increment Asg- and responds in bulk with a stress increment Acj. These values
are then equated to the respective volume averaged quantities in order to
obtain the “effective” constitutive relation for the composite material, i.e.,

sof=1 | [[anmavio  ana  ag- »[[[egoare. e
Y.

< <

»

== Ve

In Section 3 it is shown that the volume averaged or “affective” constitutive :
- relation for the composite material can be written as ‘ i
= 1 ] :
= AGS- = D;}L,Agf, -7 ’( Jj{Dﬁ,Ack,(r) — 6Dy (r) [Asf,(r) - Ac,‘,(r)]} dav(r),
- v '

(2.2)

(=

where ¥, is the volume of a unit periodic cell in the composite material, Aefi(r)
B is the total strain increment at point r in the periodic cell due to the imposed
- - uniform total strain increment Aej, at the surface of the composite, and Acy(r)
= is the strain increment at point r in the periodic cell representing the com- ‘
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representing the deviation from isothermal elastic behavior. The fourth rank
tensor 3D, (r) is defined by the relation '

5Duk1(f) = 3(r) (D.!ju - Di;n';d)v (23)

the quantities Aely, D, and 8Dy (r) are given. The deviation strain increment
Acy(r) can be obtained throughout the periodic cell as a function of position
r by using an explicit Euler forward difference method, since the stress and
state variables in a viscoplastic formulation will be known functions of posi-
tion at position at the beginning of the increment. Everything is therefore
known explicitly except the total strain increment Aely(r). :

Let the Fourier series approach described in Section 3 we find that the total
strain increment is determined by solving the integral equation

1 i=
Aey(r) = Aed — v Z Z=:o ZI gklij(g)

X ‘[J.J' ei{'(l’"t’) {D,-T,,AC,,(TI) - 5Dl']rs(r,) [AEL

(') — Ac,(r)]} dV(r),

where the fourth rank tensor gu;(Q) is given by

0 = LMD F ELMEEL T ey

in which the Christoffel stiffness tensor My(C), with inverse M1 (), is defined

by the relation _
MU(C) = D,;iququ! (2-6)

with, = {o//Embm = &,/ being a unit vector in the direction of the Fourier

wave vector §, and & = /¢,.£, denoting the magnitude of the vector §. In (2.4)

the sum is taken over integer values in which

27n,
Ly’

2nn,
Ly’

and L,, L,, L, are the dimensions of the unit periodic cell in the x,, x5, X3

directions, so that ¥, = L, L, L. The values of ny, n,, n; are given by

n,=0,+1, £2, +3,...,etc, for p=1,23; (2.8)

Si=—, &= &= 27

and the prime on the triple summation signs indicates that the term with
n, = n,= ny = 0 is excluded from the sum.
In the Green's function approached the total strain increment Aeli(r) is

SUGNAL FAOE IS
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. ... posite; andAc,(¥). is.the straio_increment at, point t.in. the perodic cell. .. ..o

© o iere 9() =1 in the fibér and $(F) =0 in the tatrix; with D, denoting the - roeme oo
‘.. -elastigity tensor of the. fiber.and D, that of thematrix. . - . oro oo o :
" In the expression for the average or “efféctive” constitutive relationn (2.2), s s
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" Equivalénce of Green's Function and the F

determined by solving 4 different intégral equation, viz,

Ch < ad+ | j [amte 02 )
| 4
- 6Dmnr:(r,) [AE};(T') - AC"(T')} dV(rl )’ (29)

7 whiéré the fourthi cank fensor Ui (t — ¥) given'the ki comporent of the total

.. strain increment at point F.due tq the mn component of .a stress -increment:

applied at point ' in the infinite matrix with elasticity tensor D&, v.e.,
2 _ 2 _
1[6 Gt — ) + G (r r’)]' 2.10)

Uiimalt = ¥) = =3 ax,0x, 3%, 0x,,

and the volume integration in (2.9) extends over all the periodic cells in the

composite material, i.e., over the entire compsite.
The Green’s function tensor is defined in Barnett (1972, 1973) and Mura

(1982) by the Fourier integral

7 3 -1
G- j J R 1y

in which the tensor ¢ is now defined by the relation {, = K;/K with K =
K K, denoting the magnitude of the vector K = (K, K, K3).

and (2.9) are identical, although the summation extends over the integer values
n,, ny, ny in (2.4) and extends over the periodic cells in (2.9). :

" ..Both (24) and (2.9).are integral equations for the determination of the total

strain increment Agl(r), since this unknown quantity appears both on the
left-hand sides of the equations and on the right-hand sides under the volume
integrations. _

The “effective” constitutive relation given in (2.2) and the total strain incre-
ment relation, given by either (2.4) or (2.9), contain the volume integration of
the deviation strain increment Acy(r). In the periodic cell the deviation strain
increment at any point r will be determined from a unified viscoplastic
constitutive relation (Lemaitre and Chaboche, 1985) appropriate to the con-
stituent phase in which the point r resides. If a constituent phase is included
at the fiber—matrix interface, 2 constitutive relation can also be proposed for
this chemically degrading phase, and the resulting inelastic strain increment
determined for inclusion in the volume integrals. This may be important for
metal matrix composites where boron, carbon, and silicon carbide react
chemically with superalloy matrices at clevated temperatures.

Equations (2.2), (2.4), and (2.9) form the basic incremental constitutive
equations for determining the “effective™ overall deformation behavior of a
composite material with a periodic microstructure. In order to update the

el

si9T
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o g SUEUSHES iris showniy by applying the-Poisson sum-formula, that(2A4): .o -
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" weffective” constitutive relation over the next incrément, the constitutive
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- is used; where Dyz(¥) = Df; oD according as the point.ris inthe fiberor .. . ..
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iy seate i eattfof the conbtbient phascs i prépiration for integrating the ..

matrix. The stress g;(r) and state variables g,(r) can now be updated at each
point r in preparation for computing Ac,(r) in the next increment.
The derivation of the preceding equations and some methods for their

- solution are discussed in the succeeding sections of this paper. o
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3. Fourier Series Approach N

The application of Fourier series to the calculation of the “effective” overall
constitutive behavior of periodic composites has been dealt with in detail by
Nemat-Nasser et al. (1981, 1982, 1983). This work is used in this section to
develop constitutive relationships for viscoplastic composite materials under

small displacement conditions.
The periodic composite is supposedly acted upon at its surface by a spatially

linear displacement increment, Aul(r), given by
Aud(r) = x;Aed + X;Awf, (3.1)

where A¢) and Awy, are the spatially uniform strain and rotation increments

at the surface of the composite.
If the matrix material was homogeneous and had no fibers embedded in it,

- the'strain increment would be homogeneous gad givenby. .. o o oe

2
Since this is constant, we may trivially volume average Ae?j over the volume
V of the homogeneous matrix material to obtain

ox; 9%

| 1 /3(Aud(r)) = d(Aul(x)
.o. P p— — i J

Acej % J}j 2( 3%, + ax, dv(r), (3.3)

v
which, by Gauss' divergence theorem, may be written as
{ .

Acl = 7 II%(nj(r)Au?(r) + ny(r)Auf (r)) dS(r), 34

s

where the integral extends over the surface of the material and n,(r) denotes
the outwardly directed unit normal vector at point r on the surface. Thus, by
applying the displacement increment Auf(r) in (3.1). over the surface of the
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material to broduéc the surface stfaih ihcretr{eht éi#én i;x (34), (Zﬁ) and (33)

will vary in a periodic manner due to the assumed geometric periodicity of
the composite material, so that
Aul(r) = Aul(r) + Auy(r), (3.5)

fibers.
Corresponding to these displacement increments, the total strain increment

at any point r in the composite, Acl(r), is given by the relation

AeffY) = Aegy + Aey(r), (3:6)
where
1/8(A)  O(AuP) 1/6(An)  O(Au,)
o -_ - e —d —
Beui 2( e 4 A=\ Ta Y )
' €X)

with Ael, representing the spatially constant total strain increment which
would be produced on the surface and in the interior of the homogeneous
matrix if the fibers were absent, and with Agy(r) representing the deviation

increment Ae],(r) and the perturbed strain increment Agd,(r) vary throughout
the composite in a periodic manner.

.. ..We defige the volume-averaged stress and strain increments as {Agy» and
%, respectively. The required “effective” constitutive equation for the "~ °

(Agy
composite material is then an expression relating the volume averaged stress
and strain increments when these are equated to the respective values, Ac)
and Asg., applied at the surface. For a function f{r), which varies with position,

the volume average is defined by the relation

w=p[[[ome 639)

| 4

Since the composite is assumed to be comprised of a periodic aggregate of
identical unit cells, we may write

=7 || [roave (9)

Ve

where ¥, denotes the volume of the unit periodic cell.

Ii‘quivaléfigg_dfr'Circ_sgn‘_s}F\_ipcti_gq and the, Fourier Series Representation . 541 .

-~ o7 from. the:unifortm value due,-.t.q,(h;--pr;qqqn’c@gf;;m;ﬁb@;s.-.gqﬂx}h_g.;o{a_Ls.train;_.

~:»-show that the strain increment in the. matrix ma:tc:ial,is‘spgt_iallxtuniijm.‘_:‘_ e e e e
_If the displacement increment Aul(r) in (3.1) is applied to the actual com- - ’ o
s posite mat_c;ial,‘,the total displacement increment within the materigL_._A'y{(r),

(¢) is thé displacément increment which would be induced in the. =~
. ‘homoggnéous miatrix i'f‘_t:he_ﬁbq'phascwq;;;g_b;cnt,_and'Qui(r.)'is' the pertur- -
bation or deviation from the homogeneous value due to the presencé of the
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-..If we volume average the total strain incremeat.in (3.6), ,wg_obt,zj}_,in‘f v
. . g TR 1 SRR - eI 1 v - "5:',.-,’,’._- P [EADEE L
(Al = v '( J‘ JAEII(I') dv(r) = Aed + 7 JIJAek,(r) av(r), (3.10) :
- B R T DRI IR B & Aj‘-n . ‘-1.:‘{4- e ‘V_' IR _.,4:_;1,_-..‘.';‘__. - c ‘V.—I X '»,.,»..-.., ,_..‘_',:‘._:_-_s;. R T IRy .
or : . - A . )
(Ael) = Aed + (Agy). R (3:11)
- But the volume averaged total strain increment is equated with the value
applied at the surface, so that {Aely = Agd and
T “which shows that the volume ‘average of the perturbation:strain incfement; .=+ = »oo 70 i.e
Ag,(r), is equal to zero.
P If the elasticity tensor is denoted by Dy,(r) and the inelastic strain tensor
b . by £,(r), then the constitutive equation at any point r in the composite material
can be written as
- o(r) = Dijkl(r)(erl(r) — eg(r) — (T — Tp)), (3-13)
where
T
a (T — To) = J. af(r, T)dT, (3.14
— To
is the thermal strain and x,(r), af(r) arc the average and instantaneous
— coefficients of thermal expansion.
L The incremental form of Hocke’s law is
e K o etz e e e epE Boyi(r) = Dyulr)(Aeg(r) — Acy(r)), LGy
o ST here Ae,(t) denotés the incremental sirain representing The deviation from’  * TR T T AR -
- isothermal elastic conditions and is given by
L v L oA (1) = A+ e AT — Dpi(®)AD (O eh(®).— g = a{T. = Tl . o ol
= (3.16)
in which the tensor AD,;,(r) represents the incremental change in the elasticity
= tensor due to the temperature increment AT.
£ In a unified viscoplastic constitutive formulation (Lemaitre and Chaboche,
1985) which is integrated by an explicit Euler forward difference method, the
— inelastic strain increment Aef,(r) is a function of the current stress (at the
: * beginning of the increment), ay;(r), and the current values of the state variables,
ha q;(r). For example, if ) :
- 65 = fi](arn qs)v . (317) |
: then Ae}; = f;(0.,, 4;)At, and the inelastic strain increment is independent of
the total strain increment Ael(r). This independence of the inelastic strain
- increment on the total strain increment is no longer true if an implicit integra-
- tion method (e.g., backward difference) or subincrementation method is used.
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TR TN T - - Equivalénce of Green's Furiction and the Fourir Series Représentation
The elasticity tensor D(r) may be wﬁ;ten as )
= S p ey S D By e
where T - .
5Dijkx(") = 3(’)(Di5'u - DSZ:), (3.19)
- with 8(r) = 1 in the fiber and §(r) = 0 in the matrix, the superscripts f and m
referring to the elasticity tensor of the fiber and matrix, respectively. The
2 . constitutive equation at any point r can then be written, from (3.15),as - L
e i i e Aoyle) = (D + DI A Al T A, . G20y
- or
__ Agyr) = Di?l‘cl(AEE'l + Aey(r)
—{Dfubcy(r)) — 0D,j4(r) [A-’-g- + Agy(r) — Acy(n)1}.  (3.21)
; If the quantity in braces is set equal to D, Agfi(r), that is, if
- D,-'}L,As,f,(r) = Di'ﬁlACu(f) - 5Dijkl(") [Asﬂ + Agy(r) — Acy(r)), (3.22)
. then (3.21) can be written in the form
- Acy(r) = DAl (1) — Agki(r)) = DjulAed + Aey(r) — Agk(r)). (3.23)
- From the preceding equation it is evident that the eigenstrain increment,
Acl(r), represents the incremental deviation from isothermal elastic behavior
hind in the composite material when the elasticity tensor is taken to be a spatially
- - _ constants tensor appropriate to that of the matrix phase. .
: P L L s s Nawton's 1aws for cdminuhig.tsmtictequilibrium'1hr6ughout'-tlie«'&tmin»in-.f:s-:ze B TR PRI L R R
— crement requires that
o .. i) _ L (3.24)
St el . .. . - .- - ax". s - S ....:~.- - ..-

Equations (3.23) and (3.24) then require that
5{Di;"‘;a(A521 + Agy(r) — Agk(r))} _

= ' 0, 325

o 0x; (325)
or, if Aed, is constant,

. o A(Ae(r _ O(Ash(r

- ikt u(t) = D - )) (3.26)

an 3xj

I Due to the geometrix periodicity of the composite we may expand Au,(r)
and AeX(r) in a Fourier series (Mura, 1982, Appendix 3). This gives

+0 o fo

Au ()= Y Y Y Ad(ng,ny,n)

n;=0 ny=0 ny=0

2 2 2
) (’9 / X exp’[g Zn‘ xy + zﬂz X, + znsxs)], (327
’ 1 2 3 -
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~where L,, L,, L, are the dimensions of a unit cell in the x,, %3, X3 directions.

- . Kevin P.. Walker, Eric H. Jordan, and Alan D. Freed .

o Ve S e

... The coefficients Ad, in the Fourier expansion are determined by multiplying

each side of (3.27) by exp —i( i x; + —mz—x2 + e x;)] and inte-

_ , L, L, L,
grating over the volume of the unit cell to give ' :

1 L, *L; Ly
Ad,(ny, 13, ns) = ‘—’—L L,L, [ o J. . J‘ . Auy(r)
. 1 Xy = x3= xy=

. é L 1 K8 ) Lg

BNCECR
where only the terms with m; = n; survive in the summations.
Equations (3.27) and (3.28) can be written in shortened form as

to . .
Au(r) =Y Zo Y’ A (E)e™ T, (3.29)
with coeflicients Ai(€) determined by the inverse relation
1 .
Ai(B) = 37 J. J. J'Au,‘(r)e"g" dv(r), (3.30)
where ) ’
E=(¢. &2 &) r = (x,, Xz, X3), V.=L,L,L;, (3.31)
with :
2an.
. R i} (no sum on i) fori=1,2,3. (3.32)
Svasnlteeantit et e R e e

The strain increment Ag}(r) can also be expanded in a Fourier series to give

ix
A= E % LA e (3.33)

i
with coefficients A} determined by the inverse relation

s = | [ avea (134

<
Ve

In (3.29) and (3.33) the prime indicates that the term with n, = n, = ny = 0is
excluded from the summations, since Ad, (n, =0, ny = 0, n, = 0) represents
a rigid body displacement increment and A&} (n, =0, n; =0, ny = 0) repre-
sents a spatially uniform strain increment.

By substituting (3.29) into (3.7); (3.7) into the left-hand side of (3.26); and
(3.34) into the right-hand side of (3.26), the equilibrium relationship becomes

kS

Dju X Z:) L HAaa®)eS, + AE)EE)E

ito .
= —iDfua Y. Zo T ASHE) e, (3.35)
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Equivalence of Green’s Function and the Fourier Series Representation 545

oRtes- oRgARE. 630

S IE= ,/C‘ £ denotes the magnitude of the-vector &, a unit - vector §in the. - oo

direction of E can be written as {; = ¢; /C Equatlon (3.36) can therefore be
written in the form o

is called the Christoffel stiffness tensor and (3.38) can be written as
My QAR (E) = —iDF.EALLE). (3.40)

This equation can be inverted by premultiplying each side by the inverse
tensor £-2M ™! to give the Fourier expansion coeflicients

A, (8) = —iM Q)Dg.AELE)E ™ (3.41)

The expansion coefficients can now be substituted into the Fourier expansion
of Au,(r) in (3.29) to give

increment may be written as -

Agy{r) =} }: T AETME Q58+ 45‘21%:‘(‘;)é,6:,)1).,,.A€,“,(1i)e'§ AR

(343)
If we define the fourth rank tensor g,,;(5) by the relation ‘
Fuii(©) = M Q) + M QL) (3.44)
then the perturbation strain increment can be written in the form
to
Agy(r) = Z Zo z guu(C)DunAé A (31 = 5 (3.45)
- and by inserting the relation for the Fourier expansion coefficients A&, from
(3.34), we obtain 7
1o & '
Aeu(r) = 47 Y Y Y gug® ”.JlD{}‘nAE?,(l" )eS =M dv(r), (3.46)
< n,=0 .

Y. .
where the integration extends over the volume, ¥, = L,L;L3, of the unit
periodic cell.

&0 @(%) A (E) = —iDREAEE) (337
or
: CZ(DU,‘,C C,)Auk(ﬁ) = —quuf,Aé (3 A - (338)
. The second rapk tensor, . - . .. " ‘:‘ T I
ik(Q = Mki(c) = Di?':d(téj: (3-39)

ot -]
Aulr) = =3 Z, Y &M Q) DG.EALLE)e . (3.42)
- Thissesult may now he: substlt,utqd into:(3, 7), so that the Qerturbatxon stram o e e

tj-Q’
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- 546 Kevin P. Walker, Eric H. Jordan, and Alan D. Freed

v

", . From (3.6) the total strain increment is given by - .

- Ask(r) = Bl + -3 5 ¥ 6@ J”D;,As:,(r')e'ﬁ‘"-” aver), (340 - L
7 T mow e T - RpmQ i el : B T T T B L TN e L .
- . s e '7' L V. ] R e ARt i e K "
- . which, from the definition of Df,Ae%(r') in (3.22), may be written in the final
S form '
- 1 1o . .
As{z(r) = Agpy + v Z z—o Z' guij@) J.J.J' et =)
. x {D,Bc(F) — 8Dy () [Aer (1) — Ac, ()]} av(r). (348)
“This imblicﬁ intégral equafiqr‘l.—;'(-2.4)' in Section 2—must be solved to yield o
7 the total strain increment Ask(r) at each point r in the unit periodic cell.
- Instead of solving for Ae}(r) from this implicit integral equation, we could
o use (3.6) and (3.22) to eliminate Ael(r) from (3.48) to give an equivalent integral
o " equation for Agk(r), viz,,
EEE?
DS-L,AE,’:‘,(I‘) = Di‘};dAckl(r) - 5Dijkl(r) [ASEI - Ath(r)] ,
) 1 o . .
£ - 5Dijk((")“7 Z Zo Z’ Fitmn(C) J.JJ. D:unmAE:s(f')e'g'('—” dv(r).
" (3.49)
_ - The incremental constitutive relation at any point r is given in (3.23), and
this relation can be used to update the stress state at any point r in the unit
e i e cell onge (3.49) i§_§91yp¢_f9q Ag:‘,(r'):.ﬁlt_qqnzigzi:ycl_y, (3.48) can be solved for Acel(r) o )
_ ’ ST e serted into (3722 a1d (3.23). ‘The dverall Heffective donistitutive relation S 2t R e e L
e for the composite material can be obtained by averaging (3.23) over the unit
_ periodic cell. This gives ‘ '
= (Bayd = (DRAAS + Aoy — Ash)> (3.50)
or i
. {Agy> = D3, Acd + Dji{Aey)> — DjulAe). (3.51)
- If we define Aa}} = (Ao as the volume averaged stress increment, Aet =
o (Ael) as the volume averaged eigenstrain increment, and note from (3.12)
P that the volume averaged perturbation strain increment is zero, ie (Agy) =0,
H then the overall “effective” constitutive relationship is
. Ac? = D3, Ael, — DR Ach, (3.52) |
:: or, from (3.22), l
i

Acf = DR Al — % jJ:[ {DuAcu(r) — D(r) [Aeli(r) — Acy(r)]} dV(x). -

v , (3.53) g
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Equivalence of Green’s Function and the Fourier Series Representation 547« |

then proceeds as follows: _ . _
" °{1) From a knoWwledge of the stress state throughout the unit-periodic cell-at--- .
the current time, t, calculate the inelastic strain increment Agf (04 Gse )
from an appropriate unified viscoplastic constitutive relation. The visco-
plastic constitutive relation will vary according as r is in the fiber or
matrix phase, respectively.
(2) Compute the eigenstrain Aefj(r) throughout the unit periodic cell from
either the implicit integral (3.49) or from (3.48) and (3.22).
. (3) Compute the stress increment throughout the unit periodic cell from (3.23)
.~ and up‘dateihc‘sti—ess,'-Stra'in,:-an;d viscoplastic:state variables accordingto. - . . oL,
the relations ' o T

oy(r. t + At) = gyilr, 0) + Ag(r),
€X(r, t + Af) = gl(r, 8) + Aejr),
qi(r, t + Af) = gi(r, 1) + Agyfr).

(4) Calculate the overall “effective” stress and strain increment for the com-
posite from (3.53) and update the overall “effective” stress and strain from

the relations
o(r, t + Af) = al(r, 1) + Aagy(r),

e)r, t + Aty = ei(r, 1) + Agl(r).
(5) Repeat the preceding calculations for each incremental load step.

The preceding algorithm makes use of the fact that the inelastic strain

Crmeee r oo, intrement-Aehis) isxindependent. of -the total strain .inq_rgmgn‘t.._és},(‘r_)mif', A0

explicit Euler forward difference method is ‘used to integrate the unified
viscoplastic relations for the fiber and matrix phases. If an implicit method—

. such as_backward difference or subincrementation—is used, the inelastic .
strain increment depends on the total strain iricrement. In this case the total
strain increment must be obtained by iterating (3.48) in the form

1 io ,
AEI((T) = AE?I + v Z Z—;o Z’ gu.';(C) j.J‘J-e‘E‘“—”{DS"nACn(T', As:q("'))
) i v,
— 8D, (1) [Aer(r) — Ac,(r, Agp (r')]} dV(r). (3.54)

The first iterative guess can be taken as Acel(r) = Ael, and the right-hand side
evaluated to give an improved guess for Aef(r). This process is then continued

with ‘
. 1 to N ;
{Aef.(r)}m = Ae + v Z Zo z' gklij(g) J.“‘e'g'"_”{Di}l,ACu(r', ASL(VI)}A)
P V. : ‘ .
— 8D,V AN} — AcalE’s {85} AVE), - (B39) i
until the Ath and (1 + 1)th iterates of Ag](r) converge. 0 l

\
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- 548 Kcvm P. Walkcr EncH Jordan and Alan D. Frced o l

' ’Equanon (3 49) is not so convemcnt I'or 1tcratlon as (3 48) whcn thc mclasnc SR

~ strain increment depends on the total strain increment. It i is always necessary ,

© «to-know the total strain: increment- -Agg(r)in. order-to. calculatc the inelastic: i i e
strain increment A%(r', Ae], (r)) But (3.22), viz., )

uuAgu(r) = uszth(r Aepq(r)) - 5Duu(r) [Aau(") — Acy(r, Ae] (f))] (3.56)

is an implicit equation for Aefy(r) when the iterated quantity, Aegi(r), is given.
Equation (3.48) is therefore the appropriate equation to iterate when the
inelastic strain increment depends on the total strain increment. For further
details, see Walker et al., (1989). . ‘ i

BN ...- s - - . - . v CL e e : .. . - T, PRI . o e

“|wmnw I
ReL I .

4. Green’s Function Approach

‘I\ LR IR

The equation of continuing static equilibrium for the composite material
throughout an applied strain increment is given by

0{Aayr))
dx

]

r

+ Af(r) =0, 4.1

where Af;(r) is the incremental body force per unit volume of the composite
material. From (3.23) and (4.1) we obtain

- A T
R = D) - A1) “2)

J

.From this equation 1t |s clear that the dlvergence of the stress varjation | .
- rproduced by Agk(E) Tay - be Tormaily ragardéd ‘as “a fictitious body  force s e
increment, analogous to Af;(r), which is applied to the homogeneous matrix
material with elasticity tensor DJJ;,. The theory of elasticity for homogeneous
- materials is generally concerned with the solution of the homogeneous differ-
ential equation (4.2)—Navier’s equation—when the right-hand side is zero.
When body forces are present, the standard method of solution is to obtain
-the displacement solution at r due to a unit body force applied at r. This
solution is given by the Green's function Gy(r — r') which gives the displace-
ment in the ith direction at r due to a unit point force applied in the jth
direction at r’. For a distributed incremental body force Af(r’) the displace-
- ment increment at r is obtained by summing the results for the distribution
in the form

SR R S R

1
d
UKl
S
»
v
B

gRa

L]

i

lw g

Aur) = JJ:[ Gy{r — O)Af(r) dV(T). (4.3)

The integration extends over the whole volume, ¥, of the composite material !
. which may be regarded as being of infinite extent.
£ When Afj(r') = 0 we know that the displacement solution is Au} (r) = Au(r),
= corrcspondmg to an applied uniform strain increment Ac} on the infinite .
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~ Equivalence of Green’s Function and the Fourier Series Representation 549
- houndary of the homogeneous matrix. For an affecaive dis

increment, given by the right-hand side of (4.2), with Afy(r') = 0, the solution

ot for the totat displacement increment Aul(r)can be writtenas .

Aul(r) = Bu(r) — J”‘Gu(r -r )%(DZ...A?:.,(V pave). (@44
1

v

This corresponds to (3.5), the volume integral representing the perturbed

displacement increment Au(r) in (3.34) and (3.42).
For a material which is homogeneous with elasticity tensor D, the Green’s

. function sagiéﬁcs the differential relation (Mura, 1982, p. 10)

Gt =) 5 | R
m ok~ 4§ -r)=0 4.5
ifkld axj axl + mla(r ) ’ ( )
where &, is the Kronecker delta tensor giveh by da=1ifi=m and 6, =0
if i # m, and 8(r — ') is the three-dimensional Diract delta function defined

by the relation

5(r — ) =6(x; — x;)8(x, — x2)8(x3 — x4). (4.6)
By applying Fourier integral transform techniques the Green's tensor isshown
(Barnett, 1971, 1972) to have the Fourier integral form

a

d? it . .

. ..inwhich thc"iqyc;.rlgt_:_:Chﬁs.to'[I;l stiffness tensor M;'(@)is defined by

M = B L Ey T Mgy

with {, = K,/ /K.K,=K,/K being a unit vector in the direction of the
Fourier wave vector K,and K = /K, K, denoting the magnitude of the wave

vector K.
Making use of the relation

a r a I Im J
Gik(r - rl)'a—x_{(D:!\mnAa:m(r )) = _a;lr(Gtk(r -r )DklmnAs:m(r ))

Galr — 1
_0Gr =) p per ), (49)

ox;

we may write (4.4) in the form

L Aul(r) = Aud(r) — JIJ%(Gu(r — ') DfnaBena(r) AV(T)
; :
| 4 .

+ JJjMDzMAe;(H) V(). (4.10)

ox|

-2
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.. The first volume integral can be transformed into a surface integral via.Gauss! ... -,

divergence theorem, viz,

f J fi,(cu(r — ¢)DE, Acta () AV (E)
ox,

- ”n,«)cu(r — ) Dl Beta(r) dS(E). @11

The surface integral extends over the entire outer surface of the “infinite”
matrix material. Since this is assumed to be at an infinite distance, all the
integration points r’ in the surface integral are at an infinite distance from the
field point r and G,(r — r') = 0. Thus, for an infinite body the first volume
integral in (4.10) vanishes. This would not be the case for a finite body in which
the field point r is close to the surface integration point r’, and the volume (or
surface) integral would need to be retained for these situations. In this case
other surface integrals would arise (Korringa, 1973; Walker et al., (1989) due
to the application of boundary incremental displacements or surface tractions
on the surface of the material.
From the properties of the Green's function,

IGulr —r) _aGik(r —r)

4.12
- T (412)

r—r =(x; —Xxj,X; — X3, X3 — X3). @13)

Equation (4.10) may then be written alternatively as

Aul(r) = Aud(r) — J‘J.J.Q—G—Eg;‘;r,) P AL (K'Y V(D). (4.14)
1
v

But Ael(r) = $(3(Au] (r))/dx; + 3(Auj (r))/dx;), so that by differentiating (4.14)
with respect to x; and x; and taking half the sum, we obtain

Ael(r) = Asl + J‘J.J. Ujua(r — r')DiinmaAen,(r) dV(Y'), (4.15)
v

which, by means of (3.22), may be written as

Acl(r) = Aed + J:”l Ugulr — r,){D:l‘rsA-cr:(r’)

| 4

— 8Dy (r) [Ae (') — Ac, ()]} AV(Y'). (4.16)
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Equivalence of Green's Function and the Fourier Series Representation 551

- An équivalent iritegral équiation; involving the eigenstraint increment Aed(r), ~ -+

can also be obtained by using (3.22) to eliminate As}f-(r) from (4.15), which gives
D Acti(r) = Didey(r) = D pi(r) [Ae — Acg(r)] :

—6D;u(r) J. ‘” Utma(r — ¥) D AeS(r) dV(0). (417
| 4

In the preceding equations the operator

1(520&@ — 1) | PGulr — r’))

Upalt =)= =3\ 3, 5%, dx, 0%,

gives the ij component of the strain increment at point r due to an applied
stress increment component k! at point r’ in an infinite homogeneous medium
with elasticity tensor D, and Green's function given by (4.7).

From (3.6), (3.46), and (4.15) we see that the perturbed strain increment,
Ag, (r) = Ael,(r) — AcD, is given by the equivalent relations

1 io E oo
Qey(r) =4 ) Z=o Y Jumall) J-J.J- Dy, Ack(r)e™ " dV(r), (4.19)
P .

or

Askl(r) = J.J.J‘ Uklmn(r - r’)D::nrsAu:;(r’) dV(l"). (4'20)
| 4

The vlume integral in the Fourier series representation éxténds ovet the -

volume, V., of the unit periodic cell and the summation extends over the
integers n, =0, £1, £2, ..., etc., where p = 1, 2, 3. In the Green’s function
approach the volume integral extends over the entire infinite medium, i.e., over
all the periodic cells comprising the material. It is shown in Section 5 that the
Fourier summation expression in (4.17) can be converted into the Green's
function expression by means of the Poisson sum formula.

From (3.22) it is evident that if the elastic properties of the fiber are the same

as that of the matrix, then 6Dy (r) = 8(t)(Df, — D) = 0, in which case
Agli(r) = Acy(r) {4.21)

is known explicitly without having to solve the integral equation. From (3.48)
and (4.16) it can also be observed that Acfi(r) is known explicitly when
8Dy (r) = 0. The explicit relation in (4.21) holds only when an explicit Euler
forward difference method is used to integrate the viscoplastic constitutive
relations. For implicit integration methods in which the inelastic strain in-
crement Ael,(r) depends on the total strain increment A (r), (3.48) and (4.16)
show that even when 6D;;,(r) = 0, the equation to determine Agli(r) is still an
implicit integral equation. :

@. 1.8)_
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5. ‘Rélatit-)nship Bet'\.vee-n Fodﬁét Series and Green’s Fuhcti_dn»A.pplr‘oaéhos

" “In the composite material the total strain incremént Aej(r) is periodicinrand

is defined by the relationship

Ael(r) = Aed, + Agy(r), 5.1
where A0, is the strain increment applied to the composite’s boundary and is
equal to the volume average of Ac],(r) over the unit periodic cell, and Agy(r)
is the deviation or perturbation from the average value due to the presence

of the fibers.
From (4.19) and (4.20) the perturbed strain increment is given in the Fourier

series and Green's function approaches by the equivalent relations

1 it ; .
Agy(r) = v Y Zo Y Guy© JTJ DG Acl(r)e B gy,  (5.2)
or ’ Ye

Aey(r) = J._” Uit — r')D,Aer(r') dV(r). (5.3)
|4

We now show that these equations are equivalent and that the Green’s func-
tion relation is the Poisson sum transformation of the Fourier series relation.
From the definition of g,;..(C) in (3.44) we may write

) Guii8) = MG QL+ Mz O (54
or
Guiif(C 1 Ca0 §3) = 3MEM (4, Loy $G0 + M4, 8 63045800, (5:5)
& L |
4= ¢ \[Znn1 2 + 2mn,\?  (2nny\? (no sum on 1)
L L, ) "\T,
for i=123 (5.6)

We may therefore write

gknj(C) = gklij((l(nl’ ny, ny), {o(ny, ny, n3){a(ny, nz, n3)) = ﬂuj(”u ny, ns),

(5.7)
and the perturbation strain increment can then be written in the form
1 to to Fwo
Aey(r) = 77—~ Z Z Z’ Jefny, 12, 113) JJ‘ D, Aek(r)
L1L2L3 2, =0 n3=0 ny=0
Ve
| 2nn .. . 2nn ,
X exp {z[Tl‘-(xl -x))+ Tzi(xz — x3)
2nn
+ s - xs)]} dx; dx} dx;, (58)
3
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+0 o

f kkl(nh ny, n3), (5.9)

A
(1) = L,L,L;y 250 ni=0 ny=0

where

hkl(nlv ns, "3) = ﬁlij(nl, n,, n3) J‘JAJ‘DU“‘"AE‘(T )

V.
2 2
X exp {z': Zn‘(x1 - x1) + —%n-i(xz —x3)
t 2
2nn, , o
+ L (x3 - xj) dx; de dx;. (5.10)
3

By the Poisson sum formula (Morse and Feshback, 1958) we may write

a

= tio if tzw MJJJdJKei‘M'K'L‘+"'1K2L1+"‘JK.\LJ)
20 mizo mZo  (27)°

=%

K,L, K,L, K;L,
Xh“(' 2r T 2n ° 2n )’ (.11

where the sum over the integers n,, n, ny is replaced by the sum over the
integers m, ;m,, my in the Fourier integrals, the sum over m; including the case
wherem, =m, =m; =0.

We now have the alternative sum

1 +0 %o o

Z Z 2' hy(ny, n3, n3)

A P —
Eu(l’) LleLs Zo %o o

ioo

to tx
= Z Z J‘j‘J- eimiKiLy+maKaLa | myKsLs)
mlSO my=0 my=0 (27'()3

K,L, K,L, K,L
x.ﬂiij( 141 242 3 3)

27Z ’ 21[ ’ 27:
JJ—J‘D;’AE (r’)eﬂxl(xl‘31)4-(;(1:;—xl)+K,(x_‘—x’)] dxl dxz dx:,,

(5.12)
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coer L e e
: 4w o o d K
Agy (r) = —
“)Emm&”%ﬁ
bt - 2]
KlLl Ksz KJLJ (K x,+Kyxy+Kax3)
xf““( 2n " 2n ' 2=m ¢
x J‘ J J D;’L,As,‘,(r')
V‘

x - AR —mL¥ Ka(xy=malay+ Kyl =mslsl gt dxh dxj. (5.13)
Due to the geometric periodicity of the unit cell we may write

Agh(r') = Aely(x}, x5, x3) = Aek(xy —my Ly, x5 —myLy, x3 —m3Ls),
(5.14)

and
dx| dxjy dxy = d(x] — m,L,)d(x5 — myL,)d(x3 — miL,),  (5.15)

so that by making the change of variable
(x; —m Ly, x5 —myLy, xy —m3Ls) = (x1, x5, x3) =17, (5.16)

the perturbation strain increment is

@

d’K KL, K;L, K,L .
C Agy(n) = Jjj(zn)lﬂlij( Z‘n 5 ;71: 2, ;n 3)6"(‘1‘1*‘:‘2“(;-‘;)
to o Fo -
X Dm A * (7Y, K dV ” ,
,.:Z=o miZ0 mfzo f J J Fadenlr')e ) (5.17)

V(my.my,m,)

where the volume integration extends over the volume ¥,(m,, m;, ms) of the
unit cell whose center is at the point (m, L,, m,L,, myL;). Since m,, m;, m;
range over all integer values, the summation of tthe volume integrals extends
to all the cells in the periodic lattice, i.c., it extends over the entire volume, V,
of the composite medium. The expression for Ag,(r) thus takes the form

(@K (KL, KLy KiL;\ e
Askl(r) = J‘J‘J‘(zn):! j;dif( 2"1[ : s 227[ 2 » 231[ J)elx

-

X JJ.J.Dﬁ,Aeg(r")e"‘x"" av(r"). (5.18)

v

By interchanging the order of the volume and wave vector integrals and
noting that r” can be replaced by r’ since it is a dummy integration variable,
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we obtain

[ [d°K
st = [ feve [ [ |55

K,L, K,L, K;L, K- e-rpm ,
x ﬁdij( 217[ - L] 27! y 27[ "« r)Dur:AE:;(r )- (5.19)
Introducing (K, L,/2n, K, L,/2=, K, L,/2m) in place of (ny, nz, n,) in the
expression for
fklu("x n,, ny) = gu‘,(C (ny,ng, n;), Cz("p ny, n3), {5(ny, na, ns)),

(5.20)
then gives

K,L, K;L, K L, L1 K,L, K3L;
Guaij| b1 2n ' 2n " 2n )

K,L, K,L, K;L;s 1 Mikl( M;'(©)
KiL, KL )Y 1 KK KK.), (521
3(2;:’27:’27: ST KiKit =g Kok ). G2

with
K (5.22)

K _
C.‘ bl _K— — r—-—-KqKq,

and the perturbed strain increment takes the form

4 daKl xl ) M 1 ) -
Aek.(r)=J”dvu)J’”’(m3 ( Ok, + }Z(CKK>

X C-DE Aeh(r). (5.23)
But, from (4.7),
— d3K Mikl(Q) -,K (1)
Gik(r - ) J"[J.(zﬂ)l Kl
— dJK Mtkl(g) ,l( (t— [)
e’ K¥ (5.24)
since G, (r — r) = Gyu(r' — 1), and tﬁerefore
3Gyt — 1) 4*K Md:l(C) iK-(r-r)_
dx; 0 - @n® K —xz KK - 529)

Inserting the last relation into the expression for Ag,(r) then shows that

Aak}(r) = —“jdw )= (azG“(r -0, Gl — r.))D;‘,,Ae (). (5.26)

dx; 0x, dx; 0x
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From the definition of the tensor U,,,..(r — ') in (4.18), we see that
Agy(r) = JJ‘I Um'j(r - r,)Dl;rsAa‘ (r')dv(r), (5.27)
| 4

which is the result obtained with the Green's function approach.

The Fourier series expression for the perturbation strain increment is.thus
identical to the Greeen's function expression and the two are linked via the
Poisson sum formula.

6. Concluding Remarks

The Fourier series and Green's function representations have been shown to
be equivalent approaches by means of the Poisson sum formula. This method
is well known in mathematical physics and is used extensively to turn slowly
convergent Fourier series into a series of rapidly converging Fourier integrals.
Both representations offer promising approaches to modeling the viscoplastic
behavior of metal matrix composites at elevated temperatures. Having shown
their equivalence we are free to choose between them based on mathematical
and/or numerical convenience. Each is expected to be suited to different
situations with respect to convergence of the series with increasing fiber
volume fraction. Future work will explore the relative advantages of each
formulation and the overall usefulness of these approaches in modeling the
nonlinear viscoplastic deformation behavior of metal matrix composites. '
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Abstract—Local elastic fields in the unit cell of a periodic composite are examined numerically
with an integral equation approach. Techniques of Fourier series and Green’s functions are used
to construct the integral equations. Numerical solutions are obtained using the Fourier series
approach with rectangular subvolume elements. Specific results are given for a tungsten/copper
metal matrix composite.

1. INTRODUCTION

The combustion chamber in the three main engines of the space shuttle has a liner material
which is fabricated from a copper alloy. Temperature gradients are generated within this
liner material during the space shuttle’s launch which are large enough to cause sub-
stantial amounts of thermally-induced deformation. A tungsten fiber/copper matrix
(W/Cu) composite is being considered as a substitute to increase the strength and improve
the durability of the combustion liner, and may be characterized as a ductile/ductile-type
composite material.

Prediction of the durability of continuous-fiber-reinforced metal matrix composites
requires an understanding of the dominant failure mechanisms in such materials. A
requisite precursor to this understanding is the ability to predict the overall structural
response of the combustion liner in a finite element code. Since the tungsten wires have
diameters of about 0.2 mm, it is clear that a finite element mesh sufficiently fine to
delineate the deformation behavior in and around the fibers on a local level is prohibitive.

A structural analysis under thermomechanical loading conditions is feasible if the
composite can be replaced with an equivalent homogeneous material which has the same
overall stress-strain (constitutive) response. Armed with the homogenized constitutive
relation, the structural analysis can be used to locate those points in the component—the
damage-critical points—which experience the largest stress-strain excursions throughout
the applied loading history. The strain and temperature histories at the damage-critical
locations can then be used as boundary conditions on a small volume element to deter-
mine the local stress, strain and temperature field histories in and around the fibers. These
fields can then be used to estimate the durability of the component. In this paper we
develop incremental constitutive relationships suitable for the nonlinear viscoplastic
solution of the local stress-strain behavior. These are then specialized in numerical prob-
lems to obtain the local elastic response in a fibrous W/Cu composite.

2. LOCAL AND HOMOGENIZED RESPONSE

In order to perform a structural analysis of a fibrous composite component, it is
necessary to divide the structure into finite elements, one of which is shown in Fig. 1. Point P
in element ABCDEFGH represents one of the Gaussian integration points at which the
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Finite
element

\— Unit cell in
periodic composite

Fig. 1. Finite element and unit periodic cell.

constitutive response is used to generate the stiffness matrix of the finite element. Ideally,
it would be desirable to use elements that are much smaller than one of the unit cells,
QRST, of the periodic composite,- but this would tax computer resources. Instead, if the
volume-averaged, or homogenized, constitutive properties surrounding the Gaussian
integration point P can be calculated, these properties can be used to compute the stiffness
of the finite element in the structural analysis. Once the strain-temperature histories at the
damage critical locations of the structural component are established from the finite
element analysis, these histories can be imposed at the nodes in element ABCDEFGH and
used to determine the local stress-strain state in the typical unit periodic cell QRST by
means of a Fourier series or Green’s function approach (Walker et al., 1989, 1990). As far
as the Gaussian integration point is concerned, the surface of the finite element is con-
sidered to be many unit cells away, so that the problem of determining the local fields
within the unit cell reduces to determining the response within a periodic cell of an infinite
lattice when the strain increment given by the finite element code is applied at infinity.

We therefore attack the problem in two ways.

First, a Fourier series or Green’s function method is used to determine the
stress—strain variation throughout the unit cell, QRST, when a known strain increment,
say Agpy, is applied to the nodes of the element ABCDEFGH. This is equivalent to the
problem of determining the local response at any point r within the unit cell of a periodic
lattice when the total strain increment, Aeg,, is applied at infinity. The local response at
any point r within the unit cell is obtained from the relation

Aef (1) = My o(r) A, (1)

where M,,,.(r) represents the magnification or strain concentration factor that magnifies
the strain increment applied at the surface of the finite element—i.e. at its nodes—and
gives the strain increment at any point r in the unit periodic cell, QRST. The tensor mag-
nification factor M,,(r) is a complicated function of the geometry and constitutive
properties of the constituent materials comprising the unit periodic cell which has dif-
ferent, but mathematically equivalent, representations in the Fourier series and Green'’s
function approaches (Walker ef al., 1989, 1990). Once the total strain increment Aef,(r)
at any point r is known, the stress increment can be computed via Hooke’s law in the form

Aagy(r) = Dijkl(r)(AEEl(r) - AE/F:I(T) — ag(r) AT(r)), 2

where at the point r, Dj;,(r) is the elasticity tensor, Acf,(r) is the inelastic strain increment,
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and ag,(r) AT(r) is the thermal strain increment. The inelastic strain increment can be
computed explicitly at the point r because the stress is known as a function of position r
at the beginning of the increment. The overall, or homogenized stress increment, Aa?j,
required for calculating the stiffness of the finite element, can then be obtained by volume
averaging over the unit cell in the form

Agl = -—IV— HS Ag(r) dV (D), 3
c Ve

where V. denotes the volume of the unit cell, QRST.

Second, once the homogenized stress increment,Aaﬂ, is calculated at each Gaussian
integration point in each finite element in the composite structure, the finite element
analysis will yield the strain-temperature histories at the damage critical locations. These
strain-temperature histories can then be applied incrementally to the finite element
ABCDEFGH containing the damage-critical Gauss point, and the Fourier series or Green’s
function methods will yield the local variation of the total strain increment from (1).

It may thus be seen that the methods are used in a complementary fashion. First to
homogenize and obtain the overall macroscopic response of the composite, and then to
“200m in”’ and calculate the local response in and around the fibers in a unit periodic cell.
In obtaining the overall homogenized response it is necessary to use rapid methods for
estimating the magnification tensor M (r), because this is used at each Gauss point of the
structure for each strain increment of the loading history. A much more accurate value of
the magnification tensor, M;,(r), can be used in postprocessing the finite element results to
look at the local stress-strain variations throughout the unit cell.

2.1. Homogenized macroscopic equations

It is supposed that the periodic composite material is acted upon by an imposed strain
increment As and responds in bulk with a stress increment Ac?;. These values are then
equated to the respective volume-averaged quantities in order to obtain the effective con-
stitutive relation for the composite material, i.e.

1 1 '
Ac) = % SHVAJU(r) dv() and  Agl= v HSVAE,-Tj(r) dv(m), €
where V is the volume of the body.

The volume-averaged or effective constitutive relation for the composite material can
be written (Walker ef al., 1989, 1990) as

1
0
Aoy = D?}kl Aagl v &“‘ {D;;kIACkl(r) - 5Dajk1(r)[A€L(r) - Acy (D]} dV (), &)
< Ve

where V, is the volume of a unit periodic cell in the composite material, Agg,(r) is the total
strain increment at point r in the periodic cell due to the imposed uniform total strain
increment Ael; at the surface of the composite, and Acg(r) is the strain increment at point
r in the periodic cell representing the deviation from isothermal elastic behavior, i.e.

Acy(r) = Aep(r) + oy (r) AT(r), (6)

where Agb,(r), oy (r) and AT(r) are the plastic strain increment, the thermal expansion
coefficient, and the temperature increment at point r. The fourth-rank tensor OD j (1) is
defined by the relation

0D j(r) = l’(r)(ijkl — Dijir)s %

where d(r) = 1 in the fiber and 3(r) = 0 in the matrix, with D,’jk, denoting the elasticity
tensor of the fiber and D}, that of the matrix.

In the expression for the average or effective constitutive relation in (5), the quantities
Aep,, Dy and 8D (r) are given. The deviation strain increment Ac,,(r) can be obtained
throughout the periodic cell as a function of position r by using an explicit forward-

difference method because the stress and state variables in a viscoplastic formulation will
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be known functions of position at the beginning of the increment. Everything is therefore
known explicitly except the total strain increment Agp(r).

2.2. Fourier equation overview

In the Fourier series approach we find that the total strain increment is determined
by solving the integral equation (Walker ef al., 1989, 1990)

I X
Acg(r) = Aed, + v Y Z_g: 8itij (§)
* j S S e DR Ac(r') — SDy(NAELE) — Ac, @M AVE), @)
VC

where the fourth-rank tensor g.;(¢) is given by
8riii(Q) = HGOME'© + CjCkMu-I(C)), 4 )]

in which the Christoffel stiffness tensor M;(C), with inverse M 1(©), is defined by the
relation (Barnett, 1972)

M;©) = Dpijg%rla (10)
with {, = E/Nemm = ¢,/ being a unit vector in the direction of the Fourier wave vector
E, and & = V¢, ¢, denoting the magnitude of the vector &. In (8) the sum is taken over
integer values in which
_ 2mn, 2nn,

& =—, G2 = sz & = L, » (1)

and where L,, L,, L, are the dimensions of the unit periodic cell in the x;, Xx;, x; direc-
tions, so that V. = L,L,L;. The values of n;, n,, ny are given by

np=0,:t1,-_1:2, +3, ..., etc,, forp=1,2,3, (12)
where the prime on the triple summation signs indicates that the term associated with
n, = n, = ny = 0 is excluded from the sum.

2.3. Green’s equation overview

In the Green’s function approach the total strain increment At (r) is determined by
solving a different integral equation (Walker et al., 1989, 1990), viz.

Ak (r) = Aegy + Sgg Ukirmn(t — ¥7)
v

X [Dmnrs AC,S(I") - 5Dmnrs(r')[A8'rl;(r’) - AC,S(I'I)]} dV(l'l), (13)

where the fourth-rank tensor Ugma(r — r') gives the kI component of the total strain
increment at point r due to the ma component of a stress increment applied at point r’ in
the infinite matrix with elasticity tensor Dpprs, i-€.

2 — 2 -
1 (a Gem(r — 1') N 392Gy (r — 1 )> , (14)

U (r = ¥) = —=
kmn® = ¥) = 73\ Ty, ax, 3%, 3%,

and the volume integration in (13) extends over all the periodic cells in the composite
material, i.e. over the entire composite.
The Green’s function tensor is defined by the Fourier integral (Barnett, 1971, 1972;

Mura, 1987)
© 3 -1
Gyr-r1) = SH dK My © reem, (15)

L02n} K?

in which the vector { is now defined by the relation {; = K/K with K = VK, K, denoting
the magnitude of the vector K = (K|, K3, K3).
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herefore By applying the Poisson sum formula, it has been shown (Walker et al., 1989, 1990)

that (8) and (13) are identical, although the summation extends over the integer values 11,
n,, ny in (8) and extends over the periodic cells in (13).

[

e 1ined 2.4. Integration of the equations

- Both (8) and (13) are implicit integral equations for the determination of the total
strain increment Agg,(r), as this unknown quantity appears both on the left-hand sides of
the equations, and on the right-hand sides under the volume integrations.
The effective constitutive relation given in (5) and the total strain increment relation,
), @) given by either (8) or (13), contain the volurr'le integl'.'ati'on of the deviation _strain i.ncre-
- ment Acy,(r). In the periodic cell the deviation strain increment at any point r will be
_ determined from a unified viscoplastic constitutive relation (Lemaitre and Chaboche,
by 1990) appropriate to the constituent phase in which the point r resides. If a constituent
) phase is included at the fiber-matrix interface, a constitutive relation can also be proposed
N for this phase, and the resulting inelastic strain increment determined for inclusion in the
i_y the volume integrals. This may be important for metal matrix composites where there can be
chemical reactions between the fiber and the matrix at elevated temperatures, and for
(10) composites where the fibers have been coated with a compliant layer to enhance the
overall composite properties.
<en over Equations (5), (8) and (13) form the basic incremental constitutive equations for
determining the effective overall deformation behavior of a composite material with a
periodic microstructure. In order to update the stress state in each of the constituent

phases in preparation for integrating the effective constitutive relation over the next incre-

/€_ector

11 ment, the constitutive relation
X, riirec- Agy(r) = D,-jk,(r)(AaI,(r) — Acy(r), (16)
is used, where D, (r) = Dl or Dijjy according to whether the point r is in the fiber or
(12) matrix. This relation is used to update the stress g;(r) and, in turn, the internal viscoplastic
th.-r with state variables g;(r) at each point r in preparation for computing Acy,(r) at the next
increment.

The derivation of the preceding equations and some methods for their solution are
discussed in Walker ef al. (1989, 1990). Some numerical elastic solutions of the Fourier
= series integral equation for Acgl,(r) are obtained in the remaining sections of the paper.
1ined by
_ 3. NUMERICAL SOLUTION OF INTEGRAL EQUATION
Determination of the stress and strain increments throughout the fibrous composite
material under isothermal elastic conditions requires the solution of the integral equation

(13) (8), which reduces to the two-dimensional form

. 1 x2, o,
al( s’trafn AE{,(I’) = Aegl - Z E gklmn(g) Xg elg - 5Dmnrs(r') AE’:;(I") dS(l"), (17)
L ;l" n Ac n,=0 A
b where A, = L, L, is the area of the unit cell, and where the two-dimensional Fourier sum
- 1 ranges over the integer values #; = 0, £1, ..., £ and n, = 0, £1, ..., £, with the
7 (14 prime on the sum indicating the omission of the term in which n, = n, = 0.
= Nemat-Nasser and his colleagues (Nemat-Nasser and Taya, 1981; Nemat-Nasser et al.,
ymposite : 1982; Nemat-Nasser and Iwakuma, 1983; Iwakuma and Nemat-Nasser, 1983) have
- demonstrated that good accuracy can be achieved by dividing the unit cell into a number
1%_]972; of subvolumes, where Agl(r') in the fth subvolume integral is replaced by
1
S Acl(e') = A&’ = — ” Agf(r') dS@r), (18)
€] Ay
lenoting which corresponds to its average value in the fth subvolume whose cross-sectional area
. is Ag.
é COE 1:1-C
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34 K. P. WALKER ef al.

Let there be N subvolumes in the unit cell, with M subvolumes in the fiber and
N — M subvolumes in the matrix. Then the preceding integral equation can be written as

Aep(r) = Agly - — E EE gum(oe"'ﬂ e~ dS(r') 6D ALY, (19)
Ag

c g=1n,= 0
where D2,.,; = Dhyprs — Dirs OF 0, according to whether the subvolume g is in the fiber

or matrix, respectively.
If we use Nemat-Nasser’s notation and write

0C® = H 'S dS(), 20)
o Ay

then the preceding equation may be written as

Aei (r) = Aegy — E EZ Ziimn(Q) ODE,,. €% QP () Agrf, 21
g=1n,=0
where
s _ s
=7 (22)

is the volume fraction of the fth subvolume. We may now volume-average (21) over the
«th subvolume to obtain

N
AELQ = A821 - E fﬂslt(xlés Agrs ’ (23)
where o o
Skales = E E ' gklmn(g) 5D§mrs Qa(&)Qﬂ(—g)x (24)

np=0
which is akin to Eshelby’s (1957) tensor for an ellipsoidal inclusion.
Now 6D2,,. = 0 if the Bth subvolume resides in the matrix, so that
S8 =0 for M < B3 <N. 25)

Because only M unknowns (associated with the subvolumes in the fiber) are involved in
(23), we are left to solve

Ael = Aepy — Z FESE Ael? fora=1,2,..., M. (26)
B=
When this relation is assembled columnwise for each fiber subvolume «, the solution
can be obtained by Gaussian elimination. However, the square matrix which results from
assembling these equations is of order 6M, and for a large number of subvolumes, M, may
pose storage problems on the computer. Instead, we solve the equations by an iterative
method.

1. Magnification tensor

If we single out the «th fiber subvolume on the right-hand side of (26), we can write

Agk! = A5k1 S Sk AfrTsa - Z fsSklrs AerTsﬁ» 27
fra
or, on rearranging,
M
AEZ;I = [Iklnm fasklmn (AE,?,,, - E fﬁsrigrs AngsB> v (28)
fra
fora = 1,2, ..., M, in which I,,,, denotes the fourth-rank identity tensor. This equation
can now be solved by iteration in the form
{Aszla})\-ﬂ = Iklmn faSklnm <A£2m - E fBS,,m,S{AC h) * (29)
=1
3# o
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Microstress analysis of periodic composites 35

e fiber and until the (A + 1)th iterate differs insignificantly from the Ath iterate. If we take our .startfng
€ rritten as guess as {Aerf}, = Ay, the first iterate {Ac™F}, vields the Rayleigh-Born approximation
- to the total strain increment. Continued iteration yields higher-order Rayleigh-Born
EF, (19 approximations which converge to the solution of (26). The necessity of separating the
dominant diagonal terms containing Sqns in (27) and taking them to the left-hand side of
i the fiber the equation is required in order for the iterations to converge.
~ We may write
- {As-kr';xl)\+l = {rzlrs])\ Ae?sv (30)
where the operator {T'g;, o is given by
- (20) ”
[rztrs}o = [Iklpq + fusl‘tleq]_l<[pqrs - BE fﬁsgﬁs> . 3hn
=1
B#o
ha 21 The operator (I}, can be obtained recursively from the relation
M
[Fglrs])d»l = [Iklpq + faSI‘cxl;q]_l Ipqrs - E fﬂsgfmn[rfnnn]x ’ (32)
(22) : g1
o

I over the which is obtained by combining (29) and (30). The magnification tensor Mg, for the ath
T fiber subvolume may then be written as
. My = im (T (33)
and therefore the total strain increment in the oth subvolume is given by

AE{;’ = Mlzrs A89,. (34)

(24)
Once the values of Aelf in the fiber (where 1 < a < M) are known, the values in the
matrix (where M < o < N) can be found from (23). If further resolution is required, the
- value of Agl,(r) at any point r in the unit cell can be found from (21).
) 25 3.2. Rectangular subvolumes
i_-olved in The iterative solution requires the evaluation of the tensor SgP, from (24). For
isotropic constituents the tensor Erimn(8) éDE . may be written from (9) and (10) in the
form
— (26) Aﬁ _ Am Am
gklmn(C) ‘SD‘rSnnrs = < P ></\m 2 m> 5rka &
. the solution t e
¢ lts from u —um
1&5 M, may + ——2/;"7—_ (5rkCSCI + 5ksCrCl + 5ers€k + JlsCer)
_an iterative 8 m\ [ 3m m
- H—u +u
-2 , 35
< um )(Am + 2#m>CrC5CkCI ( )

where A%, uf and A™, u™ are the Lamé constants for the Bth subvolume and the matrix,
. J¢ -an write respectively, and

- s d for i = 1,2 6)

@n " J@an/L) + Qany/Ly)
N is a unit vector in the direction of the Fourier wave vector & = 2nn,/L; (no sum on /).
-~ The remaining factor required for assembling S22, is the Laue interference integral
(28) product, Q*(8)Q°(-¢&). For the ath and Bth rectangular subvolumes whose sides are of

length LY, LS and L‘f, L‘f in the x,, x, directions, we have
— o 8/ ¢y — o« _ B a _ B
% equation 0" (E)Q%(—E) = costé,(xT — x7) + &(x3 — x2))
Sin(L5¢,/2) sin(L§E,/2) sin(LEE,/2) sin(L3€5/2)
L°6,/2) U35/ (L5E/2)  (L5E/2)
(29) where x2, x§ and x?, x5 are the coordinates for the centers of the ath and Bth rectangular
subvolumes.

, (37
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36 K. P. WALKER ef al.

4. NUMERICAL EXAMPLES

Figure 2 shows the transverse Stress concentration factors, g, within the unit
periodic cell, when a W/Cu fibrous composite is loaded in the transverse direction with
an overall stress of o?; = 1000 kPa. The tungsten fiber occupies a volume fraction
f=9/49 = 0.184 in the unit cell of the composite, with Ew = 395 GPa, vy = 0.28,
Ec, = 127GPa and vcu = 0.34. Figure 2(a) presents a numerical tabulation of the
constant-valued stresses for each of the 49 square subvolumes. These results are presented
for those readers who desire to verify their own coding of this theory. Figure 2(b) is a
contour rendition of the 7 X 7 matrix of numbers given in Fig. 2(a). Although Fig. 2(a)
is a correct graphical interpretation of the subvolume results (i.e. the stress and strain
fields are uniform in each subvolume), the smoothing of these data in the form of con-
touring, as presented in Fig 2(b), is easier to interpret. A finer meshing than the 7 X 7
array considered throughout this paper would lead to less interpolation error inflicted by

the contouring algorithm.
The Fourier series approach—employing (5), (23), (24), (29), (35), (36) and (37N—is
used to calculate both the stress concentration throughout the unit cell and the

homogenized transverse elastic modulus. Within the unit cell, 9 subvolumes ar¢ used to

(a) Top of unit cell

g26 | 819 | 835 | 837 | 835 | 819 826

939 | 879 | 730 | 682 | 739 | 879 939

1131]1191}134031392 }1340 119111131

1210|1206 | 744

o9 «|1208|1210{1

1131]1191 11911131

939 | 879 | 739 [ 682 | 739 | 879 939

826 | 819 | 835 | 837 | 835 | 819 826

Bottom of unit call

by 7

B

51—
0 0
T S et >

1 2 3 4 5 6 7
Fig. 2. Transverse stress concentration, 6,;, for an applied transverse stress of ¥, = 1000 kPa.
Each unit cell, with its 49 subvolumes, is embedded in a doubly-periodic array of identica!l cells.
The homogenized transverse Young's modulus is (Ey = 156.3GPa. (a) Numerical values for the
transverse stress of each subvolume. The nine shaded subvolumes in the center of the unit cell
represent a tungsien fiber embedded in 40 surrounding subvolumes representing the copper
matrix. (b) Contour plot of the transverse stress with a gradation of 100 kPa per contour. A
tungsten fiber is located at the intersection of columns 3, 4, 5 with rows 3, 4, 5.
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Microstress analysis of periodic composites 37

calculate the stress variation throughout the tungsten fiber, whilst 40 subvolumes are used
for the copper matrix. The stress concentration in the tungsten fiber varies from 1175 to

t. 1 uni 1392 kPa, with a volume average of 1297 kPa. In the copper matrix the stress concentra-
*ton With tion varies from a minimum of 682 kPa to a maximum of 1210 kPa. With 49 subvolumes
: fraction in the unit cell, the overall homogenized transverse elastic modulus is calculated to be
w =0.28, (EY = 156.3 GPa. It can be seen that the transverse stress in the square planform fiber
»n__of the forms a ridge/valley in the direction of the transverse stress. The average stresses in the
presented ridges are 1340, 1392 and 1340 kPa, and the average stresses in the valley are 1179, 1175
:2b) is a and 1179 kPa. This behavior can be noticed in a similar problem where a cuboidal inclu-
L g 2(?) sion in an infinite matrix suffers a uniform eigenstrain or transformation strain. The
a strain problem is outlined on p. 107 of Mura’s (1987) book ‘‘Micromechanics of Defects in
m of con- Solids”. The ridge/valleys are present even when the fiber is isolated, and may be con-
t:7x7 d trasted to the case of an isolated fiber with circular (or ellipsoidal) cross-section which, by
L_ted by Eshelby’s (1957) analysis, would possess a uniform stress distribution within the fiber.
A check on the transverse elastic modulus can be made by assuming that the unit cell
¢ 37)—is . is comprised of four subvolumes, with one subvolume in the fiber and three subvolumes
;___1d the in the matrix, as in Aboudi’s (1987) model. Each subvolume is assumed to be a spring $0
ce used to that the unit cell is assimilated to two springs connected in parallel. One spring in this

parallel arrangement consists of a fiber and matrix spring in series, whilst the other spring
in the parallel arrangement is a matrix spring. Taking account of the volume fraction of
- each spring allows the homogenized transverse modulus to be written in the form

_ Vi
R (A = ETE) 9

Assuming the volume fraction of the tungsten fiber to be f = 9/49 gives (E) = 149.3 GPa
vs 156.3 GPa from the Fourier series calculation. Experiments carried out at NASA Lewis
Research Center (Verrilli, 1988) have given values of the transverse elastic modulus of
W/Cu composites as (E) = 136 + 15 GPa at 9%, volume fraction and (E) = 178 £ 15
GPa at 40% volume fraction. An interpolation gives (E) = 148 + 15 GPa at a volume
fraction of f = 9/49 = 18.4%.

— Figure 3 shows the hydrostatic stress (gy; + 032 + G33)/3 for the same transverse
loading condition. High hydrostatic stresses occur at the fiber/matrix interface perpen-
dicular to the direction of the loading axis. If the fiber had the same elastic moduli as the
matrix and the unit cell was elastically homogeneous, the average hydrostatic stress in

—
each subvolume would be 333 kPa. Tungsten/copper composites fail in thermomechani-
cal fatigue tests through grain boundary cavitation in the copper matrix near the interface,

- 7
6
z 5 -
- 0 0
= TN, >
3|
2
F | l
kPa. 1 2 6 7

cells. . . . .

e Fig. 3. Contour plot of the hydrostatic stress concentration, (7,, + 05 + 653)/3, for an applied

T : transverse stress of ¥, = 1000 kPa with a gradation of 50 kPa per contour. For a homogeneous

SETer material the hydrostatic stress would be 333 kPa. A fiber is located at the intersection of columns

I A 3, 4, 5 with rows 3, 4, 5. Each unit cell, with its 49 subvolumes, is embedded in a doubly-periodic

array of identical cells.
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1

Fig. 4. Contour plot of the transverse stress concentra
,, = 1000kPa with a gradation of 200 kPa per conto

columns 3, 4, 5 with rows
49 subvolumes,

0
0'“4—4

1

Fig. 5. Contour plot of the transverse s

—I I ll

2 3 4 5 6 7

- o

tion, @,,, for an applied transverse stress of
ur. A fiber is located at the intersection of .

3, 4, 5, except the (5, 3) node which is a void. Each unit cell, with its
is embedded in a doubly-periodic array of identical cells.

| 1 l

2 3 4 5 6 7

tress concentration, @,,, for an applied transverse stress of

@% = 1000kPa with a gradation of 300 kPa per contour. A fiber is located at the intersection of

columns 3, 4, 5 with rows 3, 4,

5, except the (5, 3) and (5, 4) nodes which are voids. Each unit cell,

with its 49 subvolumes, is embedded in a doubly-periodic array of identical celis.

0
UH<-4

i

Fig. 6. Contour plot of the transverse str

a?, = 1000 kPa with a gra

columns 3, 4 withrows 3, 4, 5, and a void is located a
Each unit cell, with its 49 subvolumes, is embedded in a

2 3 4 5 6 7

- &
— 600 =9,

ess concentration, ,,, for an applied transverse stress of

dation of 200 kPa per contour. A fiber is located at the intersection of

t the intersection of column 5 with rows 3, 4, 5.
doubly-periodic array of identical cells.
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Microstress analysis of periodic composites 39

and by tensile overload of the tungsten fibers (Kim et al., 1989). High hydrostatic stresses
near the interface may be important for cavitation growth in the copper matrix, which is
an important creep rupture mechanism known to occur in copper.

It is also of interest to examine the redistribution of stress when one or more of the
nine subvolumes comprising the fiber is assumed to lose its load-carrying capacity,
thereby becoming a void. One corner subvolume is assumed to be a void in Fig. 4. The
transverse stress concentration in the rest of the fiber is now enhanced to compensate for
the loss in the load-carrying capacity of the void subvolume; in particular, the peak
stressed subvolume in Fig. 4 is 1800 kPa, compared with 1392 kPa in Fig. 2. Figures 5 and
6 show the stress redistribution when two and then three fiber subvolumes at the
fiber/matrix interface lose their load-carrying capacity. In these figures, the peak stressed
subvolumes are 2419 and 2040 kPa, respectively, with the latter occurring in the matrix,
as compared with a peak stress of 1392 kPa in Fig. 2. When viewed in sequence, Figs 4,
5 and 6 show how the transverse stress field could vary due to the growth of a fiber
debond or a crack. A finer meshing would permit a more detailed study of such flaws.

Although W/Cu composites have a strong thermodynamically-compatible bond at
the interface (i.e. there is no interspecies diffusion), it was thought worthwhile to
investigate the behavior under a transverse load when the interface is composed of a
degraded material, or perhaps is coated with a compliant layer of a third material.
Specifically, the central subvolume is assumed to be pure tungsten, and its eight nearest
neighbors are assumed to have elastic moduli that are the average of those for tungsten
and copper. The transverse stress concentration is shown in Fig. 7. The ridge/valley has
disappeared, but this is perhaps because only one subvolume is considered for the tungsten.
Also, the stress field of the unit cell is more uniform than that of Fig. 2, as expected.

7

s/ﬁ
0 1248

“« 4 — —

11
3@_,//

L L]

1 2 3 4 5 6 7

a

Fig. 7. Contour plot of the transverse stress concentration, ,,, for an applied transverse stress of

o’ = 1000kPa with a gradation of 50 kPa per contour. A fiber is located at the (4, 4) node. Its

eight nearest neighbors (an interface or compliant layer) comprise a material whose elastic moduli

are the average of those for tungsten and copper. Each unit cell, with its 49 subvolumes, is
embedded in a doubly-periodic ‘array of identical cells.

5. CONCI.USIONS

A magnification tensor is derived using Fourier series techniques. This tensor trans-

‘forms the far-field strain to the local strain of a constant-strained subvolume, which is

considered to deform elastically. A set of these subvolumes can be configured by the
analyst to construct a representation for the unit cell of a periodic composite. The Laue
interference integral associated with the geometry of a rectangular subvolume is given.
Numerical examples for a fibrous W/Cu composite are used to illustrate the theory.
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